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Abstract—Differential privacy (DP) offers a framework
where potentially-sensitive data can be analyzed in ag-
gregate while limiting the information that can be known
about individual data entries. Work in the field has focused
on how DP techniques can be applied to a variety of
regression paradigms. We visit four commonly-used and
different methods of linear regression applied to different
datasets, beyond the scope of what has been covered in
CS 208—ridge regression, polynomial regression, lasso
regression, and Bayesian regression—and provide a review
of how each of these techniques has been modified to satisfy
DP in the literature. We also attempt code implementations
for these regression techniques and evaluate their perfor-
mance on simple datasets. Based on our efforts, we discuss
practical considerations, challenges, and recommendations
of the DP techniques.

I. INTRODUCTION

Linear regression techniques form a cornerstone of
statistical analysis and data science, finding particular
application in economics, the social science, and medical
research. Leaps in computational power have allowed for
unprecedented applications of regression in both scope
and depth, and a resurgence of interest in machine and
statistical learning has continued to drive its popularity.

The data fed into regression models in such fields can
often be sensitive, such as individuals’ personal health or
demographic data. However, it is known that individual
data points (often corresponding to information about
individuals) can be determined if dataset statistics are
released carelessly, posing security and ethical risks.
Providing one way to address these issues, differential
privacy (DP) is a widely-used formalism that provides a
technical, probabilistic definition of privacy guarantees,
based on mathematical formulations of datasets (Dwork
and Roth, 2006). It is therefore natural that a range
of work has focused on applying the DP framework
to regression techniques. This work extends beyond
theoretical discussion and has been applied in large-scale

environments. A prominent example when considering
linear regression itself concerns The Opportunity Atlas,
in which special techniques were developed to fulfill
DP when working with small subsets of datasets, the
application being releasing estimates of social mobility
(Chetty and Friedman, 2019).

This project has two main objectives. The first is
to give a expository survey of a variety of DP regres-
sion techniques which have been recently introduced in
the literature, comparing and contrasting the different
technical conditions and design principles behind each
of the algorithms. The second focuses on exploring
implementations, in Python, of the different techniques
discussed on the same simple datasets to empirically
evaluate and compare their performance, while also
discussing practical challenges encountered. Specifically,
we first turn our focus toward summarizing extensions
of ordinary least-squares (OLS) and logistic regression
techniques from what was discussed in class. The major-
ity of the project then focuses on four regression tech-
niques: ridge regression, polynomial regression, lasso
regression, and Bayesian regression. For each technique,
existing literature is reviewed, followed by implemen-
tation discussion. We mainly draw from the following
papers: Alabi, McMillan, Sarathy, Smith, Vadhan for
OLS; Piazza for ridge regression; Talwar, Thakurta, and
Zhang for lasso; and Bernstein and Sheldon for Bayesian
linear regression.

In our experimental sections, our overall goal is to ex-
plore how our code implementations of these various lin-
ear regression techniques compare in simple situations,
using non-private OLS as a baseline. The last section
of this report briefly discusses general takeaways when
comparing these different linear regression methods,
while also noting some limitations in our experimental
setting.



A. Setup and Definitions

For sake of consistency throughout the report, we
recap a few core definitions discussed in CS 208 and
these papers. Throughout, let X be a domain of some
arbitrary data type, and let D be a domain of datasets.

Definition 1: Let X = (x1, . . . , xn) ∈ D be a dataset
with n elements. A neighbor of X is a dataset X ′ with
one record differing, i.e. for some 1 ≤ i ≤ n, X ′ =
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn), where x′i ∈ X and x′i ̸=

xi. We write X ′ ∼ X .
Definition 2: Let f : D → Rk be a function or query

on datasets. For a dataset X , the local sensitivity of f
is LSf (X) = maxX′∼X ∥f(X ′) − f(X)∥1. The global
sensitivity of f is GSf = ∆f = maxX∈D LSf (X).

Definition 3: A mechanism or algorithm M operating
on datasets is ϵ-differentially private if, for all datasets
X ∈ D, all neighbors X ′ ∼ X , and any possible subset
of outputs S in the range of M , P (M(X) ∈ S) ≤
eϵP (M(X ′) ∈ S).

Definition 4: A mechanism or algorithm M oper-
ating on datasets is (ϵ, δ)-differentially private if, for
all datasets X ∈ D, all neighbors X ′ ∼ X , and
any possible subset of outputs S in the range of M ,
P (M(X) ∈ S) ≤ eϵP (M(X ′) ∈ S) + δ.

We assume as background knowledge the various
mechanisms shown to be DP in class (e.g. the Laplace,
Exponential and Gaussian mechanisms).

B. Linear Regression

In the linear regression setting, our dataset will have
the form where each record consists of a d-dimensional
data point (the “covariate” or “regressor” datum) xi ∈ Rd

and an output (“response” datum) yi. Taken together, the
data forms a matrix X ∈ Rn×d and the outputs form a
vector y ∈ Rd. We wish to find a parameter (or collection
of parameters) θ ∈ Rd, obeying constraints given by the
regression setting, such that θTX approximates y “well”,
as measured by some loss metric.

As an introductory example, in the OLS setting with
zero intercept, we model the data as y = θTX + e,
where e is some collection of i.i.d. random variables
representing noise. Equivalently, the OLS objective can
be formulated as finding θ̂ which minimizes the distance
∥y−θTX∥2. Then the estimator θ̂OLS = (XTX)−1XT y
minimizes the mean squared error, 1

n

∑n
i=1(θ

Txi− yi)
2.

[Citation needed] The sufficient statistics XTX and
XT y are the data needed to calculate θ̂. In the one-
dimensional case d = 1, θ reduces to a scalar quantity,
and the sufficient statistics var(X) and cov(X, y) can

alternatively be used (Wang, 2018). Here, we primarily
consider the case d = 1.

C. Datasets

The papers reviewed tested their techniques on a wide
variety of one- and multi-dimensional datasets, but we
did not see performance on a specific dataset highlighted
between papers. For now, our code implementations of
DP techniques mentioned below are commonly tested
simple one-dimensional datasets as a common point of
comparison, the same as given in HW 4. In particular,
we restrict X to N uniformly-generated points in the
interval [−1, 1], and generate y according the equation
y = cX + e, where e ∼ N (0, σ2) and c is the true
slope. Furthermore, y points are also winsorized to the
interval [−1, 1]. To evaluate algorithm performance with
variations in this data, we vary N and σ2.

By default and unless otherwise noted, we set c = 1,
N = 100, ϵ = 1, δ = 1 · 10−5, and σ2 = 0.02, such that
the data has a fairly apparent linear relationship.

II. RELATED WORK

A. General Regression Heuristics

Wang (2018) similarly presents a survey of DP linear
regression techniques, focusing on finding optimal DP
algorithms which achieve empirical risk minimization,
where empirical risk is defined as follows:

Definition 5: Given a dataset X = (x1, . . . , xn) ∈ D,
a model space C and model θ ∈ C, and a loss function
L : C×D → R which operates term-by-term (L(θ,D) =
1
n

∑n
i=1 L(θ, xi)), the (excess) empirical risk is defined

as R(θ,D) = L(θ,D) − L(θ∗, D), where θ∗ is the
optimal parameter (= arg minθ∈CL(θ,D)). The risk of
a mechanism M on D is R(M,D) = E(R(M(D), D))
and the risk of M itself is maxD∈D R(M,D).

Some popular techniques, which appear later in our
report’s discussion, for estimating θ that Wang analyzes
are the following:

• Sufficient Statistics Perturbation (SSP, NoisyStats):
Release sufficient statistics in a differentially private
manner, and then calculate θ based on the noisy
sufficient statistics. In the OLS setting we release
noisy versions of XTX and Xy to compute θ̂ =

(X̂TX)−1X̂y. This can be viewed as a special case
of noise perturbation.

• Posterior Sampling (OPS): For fixed λ, γ, and non-
privately determined optimal parameter θ, output θ̂
with probability proportional to e−γ(L(θ)+0.5λ∥θ∥2).
Intuitively, OPS fulfills DP by randomizing the
output of the algorithm over a range of values,



adding random noise; the idea works similarly to
the Exponential mechanism.

• NoisySGD (DPGradDescent): Run stochastic gra-
dient descent with additional noise added to the
gradient of the loss over each iteration to find θ̂.

The definition used for DP by Wang is slightly differ-
ent, whereby neighbors of datasets differ by the addition
or exclusion, rather than modification, of one row. Wang
also focuses on optimizing the rate of convergence to
optimal parameters as measured by squared loss by pre-
senting adaptive versions of OPS and SSP, whereas our
report focuses on studying specific regression settings,
constraints, and techniques.

In addition, Covington, He, Honaker and Kamath
(2021) present a general method for producing consistent
estimators and valid confidence intervals in a DP set-
ting via bootstrapping techniques, thereby encompassing
general linear regression settings. Their definition of DP
is also slightly different, relying on zCDP. In effect,
their paper gives a higher-level approach to solving any
estimation problem, which lies beyond the more focused
and case-specific scope of this survey.

B. Extensions of OLS and Logistic Regression

Alabi, McMillan, Sarathy, Smith, and Vadhan (2020)
take a further look into DP techniques specifically for
the OLS solution in the setting of small one-dimensional
datasets. Their model includes also a possible intercept,
such that their parameters are θ = (α, β), with the model
y = αX + β + e and the goal of minimizing the loss
∥y−αX − β · 1∥2. They examine the application of the
SSP (perturbing var(X) and cov(X, y)) and NoisySGD
methods, and also formulate several ϵ-DP versions of the
Theil-Sen estimator, based on DP estimates of medians
of predicted values of y. They recommend using SSP
when X and y can be bounded in special cases such
as when ϵvar(X) is large and the noise e has large
variation, but recommend versions of the DP Theil-Sen
technique otherwise, owing to its robustness (decreased
susceptibility to perturbations/outliers).

Implementations of DP in logistic regression methods
have also been studied in the literature. This setting re-
lates to classification methods, wherein the responses are
binary (yi ∈ {0, 1}) and θTX describes the probabilities
of predicting y given X , instead of modelling y. The
optimal parameter is found by minimizing the objec-
tive function − log

∏n
i=1 p(yi|xi, θ), where p(yi|xi, θ) =

σ(θTX) is the sigmoid function; this is typically done
through gradient descent methods. A classic example

for DP implementation arises from Chaudhuri and Mon-
teleoni (2008), which presents two ϵ-DP methods in
the setting where all data points xi satisfy ∥xi∥1 ≤ 1.
One method calculates the non-private logistic classifier
and then adds noise, using bounds on the sensitivity
of logistic regression. The second changes the objective
function by adding perturbation with a random vector,
and then calculates the parameter θ̂ which minimizes
the loss from this perturbed objective. Extensions of this
method have been applied when handling genomic data,
as demonstrated by examples like Yu, Rybar, Uhler, and
Fienberg (2014). Chaudhuri, Monteleoni, and Sarwate
(2011) extend the implementation of Chaudhuri and
Monteleoni (2008) significantly to a DP framework for
empirical risk minimization, which applies a generalized
objective perturbation technique to convex loss functions
with differentiable regularizers, applying the technique
to offer DP versions of support vector machine (SVM)
classification and kernel methods.

III. POLYNOMIAL REGRESSION

A. Discussion

The first regression technique we will take into ac-
count when performing DP techniques is polynomial
regression. When creating models to fit to data, one can
see polynomial regression as a special case of multiple
linear regression [15]. Specifically, polynomial matches
ordinary least squares regression, but uses a feature
transformation, specifically adding polynomial terms. It’s
important to point out that polynomial regression, while
designed to fit non-linear data, still utilizes a regression
function that is linear in the unknown parameters that
are estimated from the data [15], so we should view is
as a specialized case of multiple linear regression. .

B. Experimental Results

To start, we will work on modifying OLS regression
techniques in DP to incorporate the extra polynomial
terms seen in OLS regression. For this, we will be
using the dataset provided for HW 4, and restrict X
to N uniformly-generated points in the interval [−1, 1].
Similar to the OLS case, we will generate y according
the equation y = X + e, where e ∼ N (0, σ2). evaluate
algorithm performance with variations in this data, we
vary N and σ2. Instead of using standard OLS, however,
we will insert the our polynomial terms when minimizing
our objective function. Below, we have included three
different DP mechanism tests compared to true OLS,
for three different slopes: 1, 0.5, and -1.



C. Experimental Results

Looking closely, these plots show similar trends to the
generated to OLS in problem set 4, but have considerable
more stable standard deviation trends. We can explain
this with a number of different ways, but its likely that
the added polynomial terms in polynomial regression
allowed for a more nuanced fit to the data, leading to
a lower standard deviation for our estimates. It’s worth
pointing out, however, that polynomial regressions is
more susceptible to outliers, and the decrease in standard
deviation comes with the possibility of a model that
overfits to used data. To better see how polynomial
regression can produce more legitimate results, it might
be worth generalizing the data into more than one
dimension, and expanding the range of values in our
dataset but we expect this method to scale poorly, due to
the effect of outliers on this model. We will soon explore
how we can address over-fitting with more complicated
regression techniques in the following sections.

IV. RIDGE REGRESSION

Two of the methods we discuss below, ridge and lasso
regression, can be characterized by a different objective
function as compared to that of OLS, due to the addition
of a penalty term that penalizes large values of θ, and
therefore encouraging regularization. The only difference
between the two methods is the penalty term itself. In
ridge regression, we add a penalty proportional to the
ℓ2 norm of θ, whereas in lasso regression the penalty
is proportional to the ℓ1 norm. These penalty terms
are favored in traditional machine learning literature,
as they can reduce error bounds on estimators, and
defend against complex estimators overfit to the data.
(We remark that estimates θ with large parameter values
overfit to the specific data may also be sensitive to indi-
vidual perturbations in data points, posing a privacy risk;
by penalizing such cases, regularization also brings a
privacy benefit.) However, the differing nature of the two
penalty terms in ridge and lasso regression necessitates
using different approaches for creating DP versions of
the techniques. As one example, Chaudhuri, Monteleoni,
and Sarwate’s method for empirical risk minimization
applies only when the term is differentiable, which is
not the case for the ℓ1 norm in lasso regression. The
next sections are thus devoted to exploring specific DP
algorithms in these two settings.



A. Discussion

Another regression technique that should be taken
into account when performing DP techniques is ridge
regression [14]. When creating models to fit to data,
ridge regression has proven especially useful in machine
learning by penalizing model coefficients that are rel-
atively large in magnitude, ensuring that models aren’t
over fit to the training data that they’re given [14].

Here, we interpret ridge regression similarly to how
OLS is interpreted earlier, with the data again modeled
as y = θTX + e. The result leads to a very similar
estimator to that of the OLS objective - θ̂Ridge =
(XTX + kIp)

−1XT y, with k > 0 being small and Ip
being the p× p identity matrix [14].

B. Experimental Results

Here, we will work on modifying OLS regression
techniques in DP to incorporate the extra penalizing
term seen in ridge regression. For this, we will be using
the dataset provided for HW 4, and restrict X to N
uniformly-generated points in the interval [−1, 1]. Like
in the OLS case, we will generate y according the
equation y = X + e, where e ∼ N (0, σ2). evaluate
algorithm performance with variations in this data, we
vary N and σ2 Instead of using standard OLS, however,
we will insert the kIp to minimize our objective function.
Below, we have included three different DP mechanism
tests compared to true OLS, for three different slopes:
1, 0.5, and -1.

Fig. 1. Bias and Standard Deviation of Ridge parameter estimates
for true slope 1

Fig. 2. Bias and Standard Deviation of Ridge parameter estimates
for true slope 0.5

Fig. 3. Bias and Standard Deviation of Lasso parameter estimates
for true slope −1

Interestingly, these plots show little to no difference
from the ones generated in problem set 4, when using
standard OLS. There are a number of different possi-
bilities on why this could have happened, but the most
obvious one is that our generated dataset values are too
restricted in range and the magnitude of the values used
are too small for the correcting penalizing term of ridge
regression to come into play. Making the penalizing
term too large, however, completely overpowered the
more subtle regression being performed by the other



terms in our model. To better see how ridge regression
can produce more legitimate results, it might be worth
generalizing the data into more than one dimension, and
expanding the range of values in our dataset.

V. LASSO REGRESSION

A. Discussion

This section focuses on discussing and implementing
the ideas presented by Talwar, Thakurta, and Zhang
(2015). Lasso uses the same setup and loss function as
OLS, modelling y = θTX + e and aiming to minimize
L(θ,D) = 1

n

∑n
i=1(θ

Txi − yi)
2. However, there is the

additional constraint that ∥θ∥1 ≤ 1. Lasso tends to be
most applied in high-dimensional settings where p > n,
as the constraint on θ encourages sparse parameters.
(Nonetheless, implementation-wise we test the perfor-
mance of this algorithm on 1D data for consistency.)

The authors give a (ϵ, δ)-DP algorithm for providing
an estimate θ̂ based on the Frank-Wolfe algorithm.
Briefly, the algorithm updates the estimate θ̂ in incre-
mental steps, and assumes several technical conditions.
It requires the data to be bounded in ℓ1—specifically by
1. It also requires the set of all possible parameters under
consideration θ to be bounded by a convex polytope,
in this case the ℓ1-ball in Rd, and also requires the
loss function to be ℓ1-Lipschitz with constant L1. In
each step, the loss of each vertex of the polytope is
computed, where Laplace noise is added for privacy. θ̂
is then updated in the direction of the vertex with the
smallest (noisy) loss, where the magnitude of the step
size decreases over time.

Under these conditions, the authors showed that in
addition to DP, the risk (Definition 5) of the algorithm is
close to optimal. In particular, they show that the risk of

the algorithm is of order log(np)
√

log(1/δ)

(nϵ)2/3 , and any (ϵ, δ)-
DP linear regression problem under the technical condi-
tions above must have risk being Ω(1/(n log n)2/3).

B. Experimental Results

We notice that in the simple dataset example discussed
in section I.C, all technical conditions are fulfilled. As
we work in the one-dimensional case, the constraint
on the possible set of θ being the ℓ1 ball reduces to
only considering values of θ in [−1, 1]. Hence the only
vertices which need to be considered in each update
step in the Frank-Wolfe algorithm are the two points
−1, 1. By construction, all values xi and yi are also
bounded in magnitude by 1. It can also be shown that the
ℓ1-Lipschitz constant for squared loss under these data
bounds is bounded: Wang (2018) provides the fact that

if our data is bounded, an appropriate Lipschitz constant
for the squared loss is L1 = ∥x∗∥2∥θ∥+∥x∗∥∥y∗∥ (using
the ℓ2 norm), where x∗ and y∗ are the elements with the
largest ℓ2 norm among X and y. Given the data, this
constant can be calculated and inputted as a parameter
into the DP algorithm.

It was thus possible to implement the algorithm on
the simple dataset example, where in the Frank-Wolfe
algorithm T = 100 update steps are performed, starting
with an initial estimate of θ̂ = 0. We fixed σ2 = 0.02
and considered increments of N from 1000 to 5000 in
steps of 100. In the manner of what was done in the
class assignment, for each value of N , 100 trials were
performed. In each trial, the OLS and DP Lasso standard
deviation and bias were calculated (recalling that the
slope from the data-generating process was set to be
1), with the results displayed below. Note that given
the one-dimensional data and possible slope bounds,
the Lipschitz constant for squared loss can be set to
12 · 1+ 1 · 1 = 2. In this following plot, we also include
the bias and standard deviation for the non-private lasso
estimate as a point of comparison. The non-private lasso
estimate is based on using the Frank-Wolfe algorithm
with the same parameter bounds of [−1, 1], but without
adding random noise.

Fig. 4. Bias and Standard Deviation of Lasso parameter estimates
for true slope 1

There are two main conclusions to be drawn from
the performance of the DP technique in the plot. The
first is that the variance of Lasso estimates decreases
as the number of data points increases, which may hint
at convergence of the Lasso estimator under this DP
technique. The main conclusion of note, however, is that
the bias is consistently negative (i.e. values of θ̂ are



below 1), but decreases in magnitude as N increases.
Looking at the setup of the dataset and the technical
constraints, this should be no surprise. Although the data-
generating process used a slope of 1, the DP formulation
considers only possible θ in the range [−1, 1], with
one of the vertices used to perform updates being 1.
In other words, the true θ is on the boundary of our
possible parameter space, which explains the consistent
bias. We note, however, that the ordinary, non-private
lasso technique works very well in estimating the slope,
with low variance and bias, despite this fact. It appears
that the difficulty in determining an estimate on the
border of the parameter space arises not because of the
Frank-Wolfe algorithm, but because the added noise for
DP makes it hard for the estimate to consistently take
update steps in the right direction.

Indeed, as further illustrative examples, we find a
similar positive bias when our true slope is set to −1, and
we find a significant decrease in the bias when our true
slope is set to be 0.5, which lies within the parameter
range, as shown below. Finally, when the true slope is set
to be 0, which equals the initial value of our estimator,
the bias stays near 0 throughout. This demonstrates that
the bias of the slope estimate is significantly influenced
by the required bounds on the space of possible slopes.
Results are shown in Figures 5-7.

To evaluate the performance of DP lasso regression
on variants of this dataset, we also consider fixing the
number of data points at 2000, the true slope at c = 0.5,
ϵ = 1, and δ = 1 · 1005, while varying σ2 from 0.02 to
0.5 in increments of 0.01, again recording the bias and
standard deviation of the estimated slopes over 100 trials.
In another setting, we do the same with σ2 fixed at 0.1,
we vary ϵ from 0.1 to 10, with 50 points logarithmically
spaced. These produce the diagrams shown in figures 8
and 9. Modifying σ2 does not seem to produce a large
impact on the bias or standard deviation, suggesting that
the DP Lasso regression method can perform well even
when a linear trend is not obvious. As expected, the bias
and standard deviation decrease with increasing ϵ, as an
increasing privacy budget decreases the required noise
added to each step of the algorithm, producing more
accurate results.

VI. BAYESIAN LINEAR REGRESSION

We note that all the linear regression techniques up
to this point have been frequentist, producing point
estimates of θ. However, there has also been work in the
literature which focuses on analyzing Bayesian inference
techniques in a DP manner as well, which forms the

Fig. 5. Bias and Standard Deviation of Lasso parameter estimates
on n data points for true slope −1

Fig. 6. Bias and Standard Deviation of Lasso parameter estimates
on n data points for true slope 0.5

Fig. 7. Bias and Standard Deviation of Lasso parameter estimates
on n data points for true slope 0



Fig. 8. Bias and Standard Deviation of Lasso parameter estimates
with standard deviation σ2 for true slope 0.5

Fig. 9. Bias and Standard Deviation of Lasso parameter estimates
with epsilon privacy parameter ϵ for true slope 0.5

focus of this section. The techniques implemented are
drawn from the work of Bernstein and Sheldon (2019).

A. Discussion

Unlike the settings above, in Bayesian linear regres-
sion the response data are modeled to follow a condi-
tional Normal (Gaussian) distribution, instead of adding
error terms: y|θ, σ2 ∼ N (θTX,σ2). In the authors’
setting, we assume that both θ and σ2 are unknown, with
the canonical conjugate priors σ2 ∼ InvGamma(a0, b0)
and θ|σ2 ∼ N (µ0, σ

2Λ−1
0 ), where a0, b0 are constants,

µ0 is a d-dimensional vector of means, and Λ0 is
the prior d × d invertible covariance matrix. Alterna-
tively, (θ, σ2) follow a Normal-Inverse Gamma distri-
bution, NIG(µ0,Λ0, a0, b0). By conjugacy it is known

that the posterior is also Normal-Inverse Gamma, i.e.
p(θ, σ2|X, y) ∼ NIG(µn,Λn, an, bn), where the param-
eters are updated as follows:

µn = (XTX + Λ0)
−1(XT y + µT

0 Λ0)

Λn = XTX + Λ0

an = a0 + n/2

bn = b0 +
1

2
(yT y + µT

0 Λ0µ0 − µT
nΛnµn)

When both these quantities are unknown, in addition
to XTX and XT y we need a third sufficient statistic
yT y. In our case, we will also address the case where
σ2 is fixed and known in advance, and therefore only
the prior and posterior distributions of θ need to be
dealt with. In this case, only the two sufficient statistics
XTX and XT y are needed. Then the posterior update
is simplified noticeably to p(θ|X, y) ∼ N ((XTX +
Λ0)(X

T y+µT
0 Λ0), X

TX +Λ0). Furthermore, when all
data is one-dimensional, each of the elements in the
formula for the posterior reduce to scalars.

Bernstein and Sheldon discuss that a sufficient way to
implement Bayesian linear regression in an ϵ-DP manner
is to perturb the sufficient statistics with noise via the
Laplace mechanism. Defining ∆XTX , ∆XT y, and ∆yT y

as the maximum variation of those statistics adjusting
for dimensionality, for each statistic s random noise
of Lap(∆si/ϵ) is added. Let these original nad noisy
sufficient statistics be written as s and z respectively.
Given these statistics, the authors then propose three
methods to effectively use Bayesian linear regression
using these sufficient statistics. The first simply treats
the sufficient statistics as if they were the true statistics,
thus comprising a “noise-naive” method for reporting
the posterior update. While the authors show that this
method produces an asymptotically correct posterior and
we investigate this method in our experiments, they also
propose two more nuanced methods.

Both of these methods are noise-aware, incorporating
the existence of noise into the model: conditioning
on the data X can no longer be assumed. The first
method assumes that a prior has been specified,
p(X), and models the posterior as p(θ, σ2|z) ∝∫
p(X)p(θ, σ2)p(y|X, θ, σ2)p(z|X, y)p dX dy, using

MCMC sampling to approximate the distribution. The
second method performs inference directly over s,
based on the fact p(θ, σ2|z) ∝

∫
s p(θ, σ

2, s, z) ds.
A Gibbs sampler can be developed to draw
from the conditional distributions, p(θ, σ2) and
p(s|θ, σ2, z) ∝ p(s|θ, σ2)p(z|s). Although these



methods are more technically sophisticated and far
less simple, the authors demonstrate that it quantifies
posterior uncertainty far better.

B. Experimental Results

Again we use the simple dataset scheme described in
section I.C (with the slope therefore being 1). We set
σ2 = 0.5, and generate four datasets, varying values
of N ∈ {10, 20, 50, 100}. The priors for the mean
and variance on the slope are 0 and 1, respectively.
In the plots displayed below, each dataset is displayed
as a scatter plot with the Bayesian linear regression
approximations overlaid. The line representing the slope
calculated using the raw data is displayed in blue,
while the line representing the slope calculated using
the “noise-naive” DP method is displayed in red. Shaded
regions indicate plots for the 95% confidence intervals
given the posterior variance for the slope values (i.e. the
upper bound of the shaded region denotes the smallest
slope value in the confidence interval, and similarly for
the lower bound). Due to y values being clipped, the
most accurate slope estimate for the data may not be 1.
Instead, we include the non-private OLS slope estimate
on the plot as a point of comparison.

A few quick qualitative observations can be made.
First, the width of the 95% confidence intervals in slope
space decreases with N , which is unsurprising as we
observe more data and the posterior variance decreases.
However, as can be throughout the figures, the noise
added to small values of the posterior variance can result
in slope ranges which do not capture the true slope of
the data-generating process. Second, the overall accuracy
of the DP estimate approximates the raw estimate as
N increases; this is likely due to larger magnitudes of
the sufficient statistics having a greater influence on the
posterior values, with the magnitude of the overall noise
being added becoming less significant. Indeed, in the
N = 500 case, we find that the OLS estimate, Bayes
estimate, and DP Bayes estimate are nearly identical,
narrowing down to point estimates.

There are, however, pitfalls to this method, especially
when N is small. Note that in Figures 11 and 12,
the 95% confidence interval of the slope excludes the
true slope of 1. We also encountered runs in which
the approximations were much less accurate, due to the
magnitude of the Laplacian noise obfuscating the actual
posterior values. In cases like these, the overall result
of the linear regression is worthless, similar to other
situations discussed in class. For instance, in Figure 14
below there is an example of such a “bad” run. This may

Fig. 10. Raw and DP posterior estimates for N = 10

Fig. 11. Raw and DP posterior estimates for N = 50

Fig. 12. Raw and DP posterior estimates for N = 100

Fig. 13. Raw and DP posterior estimates for N = 500



highlight the need for more sophisticated techniques such
as the one developed by the authors.

Fig. 14. Another trial featuring raw and DP posterior estimates for
N = 10

To quantify the overall reliability of the DP Bayes
technique, we can follow a similar approach to how
Lasso estimates were evaluated: treating the DP posterior
mean as a point estimate, in each setting we take 100
trials and calculate the means’ variance and bias over
the trials as compared to the OLS estimate. As a point
of comparison, we also do the same for the non-private
Bayes mean estimate, plotting both results. As standard
settings, we keep the same data bounds of [−1, 1] and
generating slope of 1, and fix ϵ = 1, σ2 = 0.5, N = 500.
In the first plot we vary N from 50 to 1000 in increments
of 10; in the second we vary σ2 from 0.05 to 0.75 in
increments of 0.01; and in the last we vary ϵ from 0.1
to 10 in the same spacing as used for lasso regression.
The results are shown in the plots below.

Under our current parameter settings, we find that
we need a substantially large number of data points
(according to Figure 15, more than 250) in order to have
our bias and variance for the DP Bayes estimates behave
consistently. As our data gets noisier with increasing
σ2, our overall DP variance and bias do not change
in behavior, suggesting that the main source of noise
under these parameters is still the noise added in the
DP algorithm (compare this with increasing trend in
the variance of non-private Bayes estimates). Finally, we
also notice that for small ϵ < 1, the DP estimates also
exhibit high variance and unpredictable values of bias.
Overall, we find that this basic DP implementation tends
to be particularly ill-behaved when in situations with less
data or less of a privacy budget.

VII. CONCLUSION

Fig. 15. Non-Private and DP Bayes posterior mean estimate variance
and bias for varying N

Fig. 16. Non-Private and DP Bayes posterior mean estimate variance
and bias for varying σ2

Fig. 17. Non-Private and DP Bayes posterior mean estimate variance
and bias for varying ϵ (with y-axis range limited; for small ϵ, variance
values exceeded 10)



Having presented our results from the experimental
implementations above, we can now draw compare and
contrast some of the conclusions we found across regres-
sion techniques. The bias and standard deviation trends
for slope parameters determined through DP polynomial
regression indicates that we can achieve stable estimates
given a moderate number ∼ 1000 data points, exhibiting
the same, if not, improved behavior as compared to
the trends found in teh course problem set. Notice that
structurally, DP polynomial regression can also handle
a wide range of different, non-linear data, making it
broadly applicable. However, the fact that it is more
sensitive to outliers could make it ill-fit in situations with
noisy data.

Ridge and lasso regression both avoid overfit through
regularization. Our experiments with lasso regression is
similar in that it emulates the same stability as polyno-
mial regression. Our experiments with ridge regression,
however, does not possess the same stability as lasso,
resulting in a similar plot to our OLS tests from problem
set 4. We also found that the lasso algorithm performed
well even as the data became more noisy. From these
preliminary results, it might seem that for point esti-
mates, lasso is preferred. However, it is worth noting that
lasso regression was implemented under many technical
restrictions, such as determining a fixed space of possible
solutions for the slope estimate a priori, and calculating
a Lipschitz constant for the squared loss (which may
increase substantially when outside the data bound of
[−1, 1], therefore increasing the noise added in the
DP algorithm). Ridge regression seems better-suited for
general situations where we cannot make these technical
assumptions due to a lack of information.

The paradigm behind using Bayesian linear regres-
sion is different entirely, based on confidence intervals
rather than point estimates. However, as we saw in the
experimentation above, using a naive noise-blind DP
implementation can also lead to confidence intervals
that do not capture the true value, especially when
we have less data points or a smaller privacy budget.
Nevertheless, the low variance and bias among posterior
slope estimates in settings where we can set higher ϵ
or have more than a few hundred data points means that
this approach may be useful and fairly similar to the non-
private Bayesian regression approach in those cases.

There a lot of natural next steps for this survey.
As mentioned in some earlier sections, the generated
dataset for these experiments is very limited in nature.
We relegate all our data to a simple interval, [−1, 1],
and only add Gaussian noise. The conclusions we draw

from the techniques above are thus based on very limited
evidence, and only consistute a first look at an implemen-
tation. As mentioned in some of the earlier sections, It is
worth exploring how these techniques would fare when
using a multi-dimensional dataset. One of the simplest
possible ways to introduce this would be to introduce
another input variable, x2 that is randomly chosen from
a uniform distribution and see if regressions techniques
such as lasso and ridge regression can tell that x2 plays
no role when determining the output y, and that the
output depends entirely on our original generated inputs.
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