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Abstract

The interdisciplinary study of algorithmic fairness and bias has enjoyed a me-
teoric rise in popularity over the past several years, motivated in no small part by
the increasingly influential impact of machine learning in many aspects of daily
life. One part of this field examines the foundational issue of bias being present
in the training data that is provided to an algorithm, seeking to develop ways to
describe and mitigate this issue.

We propose a new and broad characterization of a kind of data bias that we
call differential expressiveness (DE). We formulate DE as being quality of an indi-
vidual feature in a dataset, conveying a condition where the values of the feature
cannot be consistently interpreted across different individuals. Contextualizing
our presentation with an overview of the development of algorithmic fairness, we
give two mathematical interpretations of DE and explore how the interpretations
relate to one another. In addition, we discuss a variety of case studies illustrating
how we can use DE to interpret data bias in real-world examples. Finally, we
explore how DE complements existing frameworks in the literature for modeling
data bias.
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0
Introduction

0.1 A World of (Flawed) Data and Algorithms

In 2021, more than 26 million mortgage applications were made in the United

States as reported by the Consumer Financial Protection Bureau35. That same

year, despite the presence of COVID restrictions on educational activities, 1.5

million high school students took the standardized college admissions exam SAT,
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as reported by the College Board, the organization which develops and admin-

isters the exam24. Finally, from October 1 of that year through September 30,

2022, data from the United States Sentencing Commission shows that some 64,142

individuals were federally sentenced across the country99. While describing com-

pletely different parts of life, each of the scenarios that these above numbers

reflect—for instance, securing a mortgage to purchase a first home, completing a

standardized test that plays a crucial role in college applications, and receiving a

prison sentence—represent actions whose implications can irreversibly affect en-

tire lives, families, and communities. The sheer magnitude of these numbers can

make the cumulative impact of these decisions hard to comprehend.

It is therefore not unnatural to feel unease when considering another fact that

these actions, like many others, all share in common: that they are increasingly be-

coming the domain of algorithms used in parts of the decision-making processes in

the name of automation and efficiency. Several review papers and articles, includ-

ing a report by the International Monetary Fund, have documented the increasing

adoption of algorithms within finance11,93. Consumer banking has been no excep-

tion to this trend, where algorithms using techniques as diverse as decision trees

and recurrent neural networks have been developed to assess the credit risk of

loan applicants95,54. As we will later further discuss, risk assessment algorithms,

trained using machine learning techniques, have been used to predict the “danger”

that criminal defendants pose. One notable example is the Correctional Offender

Management Profiling for Alternative Sanctions, or COMPAS, which offers a tool

meant to measure the likelihood that an individual recidivates (re-commits crimi-
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nal activity), which has been used as part of the sentencing process in several US

states since 20015.

While the SAT itself is just a standardized exam with which the College Board

has not used any algorithms (at least, they have not publicly disclosed any such

efforts), we can view the exam as itself an algorithm translating an abstract fea-

ture such as “college academic preparedness” into a numeric score with which

admissions committees can work. Insofar as we can make this interpretation, we

have grounds to analyze and question the faithfulness of this translation. How ac-

curately does a SAT score reflect academic preparedness, and are there particular

kinds of students that the exam may treat unfairly, e.g. if scores are systemically

biased to be higher or lower for those individuals? If so, how can we quantify this

behavior? Of course, similar questions apply for the other examples we have men-

tioned. Each of these algorithms takes as input an individual represented as a set

of chosen data fields, which we call features (e.g. age, race, income). Unscrupu-

lous examination of these features can make these representations inaccurate and

prejudiced. In general, we can, and arguably ought to, ask these questions given

any algorithmic pipeline where humans are involved as inputs.

Undoubtedly, algorithms provide obvious benefits in decision-making. They

can be deployed indefinitely, operate orders of magnitude more quickly, effectively

scale with computational resources, and process volumes of data impractical for

humans, which increases the availability and accessibility of services. Potentially,

they can be less biased and more consistent judges than fallible and mercurial

humans. Yet at the same time, in areas of application ranging from medicine
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to advertising, they can unintentionally exhibit bias and compound existing in-

equalities and inequities in ways that might not be obvious, especially if their

implementations remain private “black boxes”81. Especially considering the ever-

growing ubiquity and utility of algorithms in virtually every part of life (c.f. the

recent proliferation and performance of generative AI software), this dilemma

is an extremely timely and consequential. This situation serves as an impetus

and foundation for the burgeoning study of algorithmic fairness. An interdisci-

plinary subfield of computer science often inspired by fairness discussions in law,

economics, and empirical case studies of “machine bias”, its aim is mathemati-

cally characterizing and studying different notions of algorithmic bias and fairness,

while developing methods to identify and remediate this bias and/or to achieve

those notions of fairness. Work in the field ranges from theoretical analyses of

machine learning techniques drawing from areas like statistics and computational

learning theory to empirical investigations of deployed algorithms71.

0.2 Contributions

Within algorithmic fairness, this thesis specifically focuses on the topic of biases

which originate from data itself, i.e. data bias. These refer to issues innate to

the often-massive datasets that are used to train algorithms: if this training data

already exhibits historical biases, then an algorithm whose purpose is to recognize

and learn patterns and relationships in the data will inherit these biases. For in-

stance, algorithms for vetting loan applications may be excessively harsh toward

low-income or minority applicants because they were trained on data including
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instances where human decision-makers discriminated against those kinds of ap-

plicants in the past. Journalists have appropriately warned that training data is

“never raw” but “cooked”, and can be “dirty”6,45. This is a foundational, back-

ground concern: if data is unfair in the first place, then it is hard to expect that

algorithms trained on it will not be. Importantly, this phenomenon exists inde-

pendent of methodological considerations, such as sampling error when curating

datasets: it tells us that even the best data we could hope to gather might be

imperfect. It is an issue that reflects the world we live in, and is present before

any downstream tasks occur, such as model training and deployment.

As the title of this thesis suggests, we will first propose a novel concept for

a particular kind of data bias which we name differential expressiveness (DE),

which can be applied to describe a large class of examples. From a high-level,

DE can be summarized as a phenomenon whereby a feature cannot be interpreted

consistently to evaluate different individuals. For instance, structural differences

and norms may change what a certain value of that feature means between sub-

populations of interest. We offer two broad descriptions of DE. Through one lens,

DE is a product of injustices that exist in the world today, whereby contrary to

our assumption, different groups of individuals posses different distributions of a

feature. Through another lens, DE arises as a consequence of the feature itself

signifying different things to individuals in different groups.

We will later discuss, in depth, instances of DE “in the wild”, but here is as a

preview a representative example. Consider the setting of college admissions in the

US, wherein an admissions officer might look at a high school student’s Advanced
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Placement (AP) exam record, exams with registration fees that are cumulative

tests for college-level courses, as a way of evaluating academic achievement. How-

ever, the financial cost of actually registering for AP exams might serve as a barrier

for completing the exam for low-income students, even if they have already taken

the corresponding course. A wealthier student enrolled in a set of AP courses

could easily register for exams in all of them, whereas a poorer student taking the

same courses (and doing equally well) may only want to register for one or two.

Thus the same value for the number of exams a student has taken might mean

very different things, as concerns academic achievement, based on the background

of the student—a scenario where the student’s background constitutes necessary

context, exactly what our development of DE serves to characterize.

We also explore how the kind of bias represented by DE ties into extant frame-

works of bias and fairness. So far, we have implicitly discussed two broad primary

determinants of data bias. On one hand, the legacy of historical and societal dis-

crimination makes the data we observe in the real world today problematic. In

addition, however, when building algorithms practitioners often have to choose

proxy features to represent the underlying attributes they wish to measure, such

as using standardized exam scores as proxies for academic preparedness. Impor-

tantly, these determinants can be studied independent of whatever specific algo-

rithm is trained on this data (making our discussion a more fundamental one), as

they pertain to the data itself.

Our characterization of data bias will explore how we can link together these

determinants. This treatment falls in the line of previous efforts to formally de-
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scribe sources of harm in the machine learning pipeline. As a primer, we mention

three representative examples here. Suresh and Guttag (2021) provide a frame-

work for where sources of harm can appear within the “life cycle” of machine

learning, from dataset curation to model deployment and finetuning98. Mha-

sawade et al. (2021) make a distinction between the world “as it should and

could be” and the world “as it is”, and attributing possible harmful perturbations

present in the transition from the former to the latter as a product of societal bi-

ases74. Friedler et al. (2016) focus specifically on the idea of proxy features being

a source for bias, differentiating the “construct space” of underlying features that

an algorithm truly wants to measure with the “observed space” of features which

can actually be measured37. This thesis extends the contributions of Friedler et

al. to incorporate how DE fits into their framework.

The aim of this thesis is not to provide a comprehensive account of the field of

algorithmic fairness, or fully unify existing definitions. (Indeed, we will find that

several definitions of fairness are mutually incompatible.) Nor does it concentrate

on developing solutions to detecting and amending data bias (although we will

mention some literature concerning this). Instead, this thesis broadly examines the

problem of individuals being unfairly represented through data to algorithms—a

problem that is present before we even consider what the algorithm itself does—

and proposes a new characterization, grounded by a diverse set of examples, to

let us better understand it. The aim is to provide a new critical perspective on

the data that practitioners work with everyday when creating algorithms.

This thesis is organized into the following parts. In Part 1 we give a selective
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expository overview of the field of algorithmic fairness, discussing its interdisci-

plinary roots in distributive justice and law while also presenting some current

notions of fairness and how they can conflict with each other. In Part 2 we tackle

the issue of data bias. We formally present the idea of differential expressiveness,

referencing various areas of application where biased algorithms have been or

may be trained on differentially expressive data. We also discuss a mathematical

framework for understanding differential expressiveness, adapted from Friedler et

al., as the product of societal and historical inequality and the use of flawed proxy

features. We will then briefly consider ideas for how differential expressiveness

can be pragmatically addressed and how to confront the ubiquitous issue of data

bias on the whole.
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1
A Story of (Algorithmic) Fairness

In this chapter we give a selective overview of the development of the field of

algorithmic fairness and how it stands today. The focus of this survey is not

providing a comprehensive categorization of all the notions of fairness that have

been introduced in the literature. Several survey papers have been written in

recent years which attempt that goal. As some examples, Mehrabi et al. present a
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broad overview of various notions of bias in the literature and, along with Alves et

al., categorize various fairness definitions, of which we will mention a select few71,3.

Wang et al. in their survey also overview causality-based fairness definitions102.

Berk et al. focus on fairness definitions in the context of their application in

criminal justice and sentencing, and summarize ways in which competing fairness

notions may be mutually incompatible12.

The goal of this review is to provide a more narrative account that specifi-

cally focuses on work that will be relevant in the examination of data bias in the

following chapter. An increased focus is put on foundational motivations for the

field of algorithmic fairness coming from statistics, law, economics, and political

philosophy. The primary reason for this slant towards ideas outside of computer

science proper is that they will prove rather relevant in our discussion of data bias.

We give a “story” of the origins and state of algorithmic fairness: we will see that

despite its core ideas having a long history, its modern incarnation is a particu-

larly nascent and diverse field with remarkably close connections to contemporary

problems, hosting a multitude of sometimes-incompatible concepts whose future

developments are worth tracking.

1.1 Foundations of Fairness

Let us start from first principles, upon which we come across some core ontological

questions. What is an “algorithm”, and what does “fairness” mean in the context

of the algorithm? Much of the work in algorithmic fairness works with definitions

of algorithms that are kept as broad as possible so to maximize the generality of
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their theories. We adopt this convention and define an algorithm to be any process

that maps input data that represents an individual to an outcome, that is to say,

implements a task that acts on, or “processes”, representations of individuals.

The implementation of this algorithm can be arbitrary and left a “black box”,

where the details of the model are unknown.i Thus, notions of fairness apply not

only to machine learning methods like neural networks or unsupervised learning,

but traditional statistical techniques and even human decision-making settings.

The significant condition here is that the algorithm acts on representations of

individuals who are distinct beings who can be grouped together.ii This condition

allows us to reason about fairness in a meaningful way; after all, discussions

about fairness outside of computer science revolve around the core question of

how individual humans are treated.

The other ontological question—what it means for an algorithm to be fair—as

it turns out, has no unifying answer. Several precise and reasonable technical def-

initions for fairness have been proposed, some of which conflict with each other.

To start from a cleaner and more fundamental slate, we postpone an overview

of these definitions to the next section, and examine fairness as perceived in the

world of ethics. Fortunately, our understanding of an algorithm as a process that

distributes outcomes to individuals based on their qualities lends itself almost ex-
iSome papers do add more specific conditions on what the outputs should look like, or the

type of algorithm, which we will mention later.
iiIn fact, the broadness of these definitions means that we could possibly consider algorithmic

fairness over general “entities” like companies or nations rather than just individual humans, so
long as they are separate, it is meaningful to group them together, and it makes sense through
the theoretical lens of fairness to reason about equality and equity. To our knowledge, however,
the literature always specifically considers tasks acting on humans.
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actly to the setup of distributive justice and equality of opportunity. The study

of these fields provides us with nuanced and principled theories of fairness, since

those theories are crucial for their goal of providing moral guidance for the distri-

bution of benefits and burdens in societies65. Thus fairness should be understood

for us as an evaluation of the justness of algorithms as distributive mechanisms.

As an article by Ochigame states, the relationship between mathematical con-

ceptions of fairness and the foundations of distributive justice runs further back

than one might expect. The two concepts have historically been synergistic: Aris-

totle formulated distributive justice theories using geometry, and early develop-

ments in the theory of probability by mathematicians like Fermat and Pascal were

motivated in part by efforts to create formal treatments of fair division and arbi-

tration. In the late nineteenth century, the rise of the insurance industry led to

the development of risk assessment tools, which ignited conversations around the

fairness of those tools. Critiques then could rely on more straightforward argu-

mentation, given that these risk “algorithms” practiced overt discrimination by

charging differential rates based on race. Opponents to bills banning such prac-

tices cited the fact that black individuals at the time suffered from higher mortality

rates, but proponents argued from an alternate lens: that insurance policies, in-

stead of being modeled after “fatalistic statistics”, should be designed to strive

toward an imagined future without disparity, where minorities’ life circumstances

were equal80.iii Risk models were applied to credit bureaus and policing in the
iiiIt is worth mentioning that the parallel development of statistics, somewhat comparably, is

problematic. Prominent statisticians including Pearson and Fisher were motivated by theories
of eugenics; this historical fact has prompted calls to critically reevaluate the function and
interpretation of the statistical methods that they developed and that are still used today22.
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20th century, sparking controversies over the legitimacy of “statistical objectiv-

ity” to evaluate individuals.iv Thus the relationship between the development

of perspectives of fairness and justice, the prevalence of discriminatory practices

and areas of study, and the rise of quantitative scientific methods is enshrined in

historical record. To discuss the development of one of these subjects necessitates

a consideration of the others.

As controversies over credit scoring and criminal sentencing began to emerge,

a concurrent movement in ethics and political philosophy starting in the 1970s

introduced a radical new foundation for fairness. The philosopher John Rawls,

arguably the founder of this project, proposed in his works A Theory of Jus-

tice and Justice as Fairness what remains one of the most-discussed theories of

distributive justice today, resting on two claims culminating from a path of rea-

soning he believes people would follow if they were divorced from modern society

in an “original position”, under a “veil of ignorance”105. First, there is some set

of inalienable basic rights and liberties that nobody should be denied and are

collectively compatible. Second, societal inequalities may be tolerated insofar as

they apply to positions that are accessible under a condition of equality of oppor-

tunity, and they benefit the least well-off in society (what he calls the difference

principle)84,85. This formulation of fairness is decidedly not utilitarian, espous-

ing a more liberal viewpoint. Yet it is also not completely egalitarian given its

descriptions of justified inequality.
ivAs another example: in the post-World War II era, academics such as von Neumann and

Morgenstern were also instrumental in expanding the mathematical toolset available to policy
in practice, introducing the novel application of mathematical optimization methods to human
sciences and actuarial systems, incorporating concepts from game theory and statistics80.
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Rawls’s work began an ongoing discussion on distributive justice. One promi-

nent response was that of Ronald Dworkin, who considered a modification of

Rawls’s argument now called “luck egalitarianism”. Dworkin critiqued Rawls for

not properly treating criteria associated with individual responsibility that he

viewed as categorically distinct from uncontrollable “endowments” given at birth.

His overarching understanding of moral equality was not as necessitating equal

treatment (equal ends) to all people, but rather treatment of all people as equals

(equal consideration). In other words, while Rawls believed all characteristics

of people are irrelevant when considering how to treat them, Dworkin disagreed

and took agency to be a relevant factor. While people should start with equal

access to resources, he argued, inequality is tolerable so long as it is attributable

to differences in voluntary acts and decisions. This still leaves space to consider

compensation schemes for those with unequal endowments (e.g. ill health)41,88.v

Political scientists and economics later focused on applying the theories pro-

posed above, regarding them through an quantitative lens. H. Peyton Young,

in his book Equity: In Theory and Practice, considers “everyday” distributive

problems, including taxation, emissions markets, and organ donation. He frames

his definition of equity as a grounded translation of the social justice conceptions

above: to be equitable is to create a practically just distribution scheme in real-
vThe philosopher Robert Nozick went further in elevating the significance of personal respon-

sibility. He proposed a libertarian viewpoint reminiscent of laissez-faire economics and Locke,
doing away with distributive notions altogether and considering a state of the world to be just
as long as individuals’ holdings follow rules defining the just acquisition of property, thus being
wholly concerned with processes rather than ends78. Beyond Dworkin and Nozick, there is no
shortage of review articles covering the modern discourse over distributive justice, e.g. on the
Stanford Encyclopedia of Philosophy65,2.
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world scenarios, which depends on scenario-specific objectives. Pointing out that

“theories of justice in the large have little to say about what it means in the small”

(that is, global ideals about distribution are too abstract to be useful in situations

such as economists setting tax rates), his focus is on “compartmentalized” situa-

tions where concepts like the difference principle are too abstract and pragmatics

like economic incentives become relevant109.

The economist and political scientist John Roemer has focused specifically on

developing the idea of equality of opportunity (as opposed to equality of outcomes)

espoused by the various political theories introduced since Rawls. One of his main

contributions is involving the language of economics to quantitatively formulate

the level of effort exerted by individuals in addition to circumstances and how

that can inform real-world policy, including what it means to “level the playing

field”87,88. He adapts Dworkin’s differentiation between controllable and uncon-

trollable attributes to describe an individual’s effort and circumstances, which

respectively denote the individual’s own agency and arbitrary factors. Roemer

believes that individuals should not be held responsible their types but should for

the things they consciously do, i.e. their effort relative to their type.

Consider a desideratum u for which we wish to equalize opportunities as a

function of circumstances C, effort e, and policy φ: u(C, e, φ). Individuals are

partitioned based on their circumstances by being given one of finitely many

“types” t. A choice of policy induces a distribution of effort from the continuum

of individuals having that type. For instance, u may be wage-earning capacity,

C the family socioeconomic status, and φ a budget of how much to spend per
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student; the distribution of effort of poorer students may be systemically different

than that for richer students. His model’s assumptions are thus that we can group

individuals into different types, and that we should think of an individual’s effort

relativistically: “in deciding how hard a person has tried, we compare him only

to others with his circumstances”. To evaluate effort, then, he reasons in terms of

quantiles rather than raw values. Let vt(π, φ) denote the value of u for individuals

at quantile π of the effort distribution for type t under policy φ. Roemer’s equal

opportunity policy aims to maximize the sum, over all percentiles, of the minimum

achievement of u among all types at that percentile:

φEOp = argmax
φ

∫ 1

0

min
t

vt(π, φ) dπ.

In contrast, letting the number of individuals of type t be nt, he notes that a

utilitarian policy would be argmaxφ
∑τ

t=1 nt

∫ 1

0
vt(π, φ) dπ, and a Rawlsian policy

attending to the least well-off would be argmaxφmint,π v
t(π, φ).

To apply this formulation to practice and argue that defining circumstances

and effort levels is practically tractable, Roemer has attempted to estimate vt(π, φ)

from historical data. For instance, in the aforementioned setting of equalizing

wage-earning capacity, based on economic data in the United States he perhaps

unsurprisingly finds that φEOp would involve disproportionately higher levels of

spending per capita on students of lower socioeconomic status, by a factor of

about five. Furthermore, however, he finds that such a policy does not resolve

racial inequality in wage earnings, and that an equal opportunity policy that also

factors in race produces a φEOp that comparatively invests even more in black

students, leading to larger variance in budget allocations87.
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This takeaway shows that equality of opportunity can recommend justified

differential treatment (so even when relaxing the Rawlsian condition by holding

individuals responsible for their efforts, we still get a principled argument in sup-

port of equity); it can even be used to identify and characterize intersectional

concerns. Indeed, it provides an argument against rhetoric stipulating that equal

opportunity policies ought to be “color-blind”, e.g. in admissions; those “color-

blind” policies can be suboptimal if the goal is achieving equitable outcomes with

respect to race, since to tackle racism requires recognizing race. Roemer’s conclu-

sions were published more than 20 years before the Supreme Court’s decision to

strike down affirmative action programs, partly in the name of “color-blindness”97.

We can view Roemer’s contributions as a natural extension of the line of in-

quiry begun by Rawls and Dworkin. He factors in individual effort as a core part

of his model, while accounting for the fact that effort itself might intrinsically

differ among different types of individuals. Later in this chapter, we will see that

the work of Caterina Calsamiglia extends this issue by considering how individual

decisions regarding expending effort depend on access to resources17. Hence we

have seen a gradual evolution in thinking about fairness in both principle and

practice over a timespan of centuries, progressing from origins as old as statistics

itself to the modern day where there is a continuing effort to quantitatively de-

scribe concepts of equality and equity. With this established, it is about time to

look at algorithmic fairness proper.
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1.2 Into the World of Algorithms

The next transition in our story of fairness is the jump from studying economic

mechanisms to algorithmic processes. We can consider running an algorithm as a

further step down from the abstract perspectives above, similar to implementing

an economic policy: both systematically assign individuals to outcomes. However,

whereas economists might have more control over policy objectives and the tools

they use, algorithmic fairness often works in a more constrained environment,

considering a particular existing task for which an algorithm has been created. In

some cases the degrees of freedom are even more limited: we may only be auditing

a black-box algorithm without a way to inspect its implementation. At the same

time, the specificity of the setting makes it easier to perform rigorous analyses

that are closely tied to real-world case studies. Arguably, this is by design: an

undeniable motivation for studying algorithms is their meteoric rise of use in

consequential decision-making circumstances where the models have already been

created3,12,71. The definitions we review thus are mainly concerned about how

individuals are treated on the basis of the outcomes they have been given; we

audit for fairness given the algorithm’s results.

There are two overarching approaches to algorithmic fairness today: individual

fairness and group fairness (sometimes called statistical fairness). At a high level,

these approaches respectively interpret fairness as treating similar individuals sim-

ilarly, and ensuring groups of individuals receive similar aggregate outcomes. To

clarify these concepts we introduce some notation. We use P and E to denote
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probability and expectation.vi Let V be the “world” of all possible individuals V

as presented to an algorithm. In situations where we are evaluating an algorithm

that has acted on a concrete set of individuals, we denote that set as X, a finite

subset of V . To be precise, each element x ∈ V is not a human but rather a

representation of the human through a fixed-length vector of features available to

the algorithm, x = (x1, . . . , xk). Each feature xθ denotes an attribute θ of the

individual whose value might be a scalar or one of a finite number of descriptive

quantities, e.g. income and race respectively.vii The important takeaway is that

when we talk about individuals in this thesis, we are actually always implicitly

talking about representations of those individuals!

An algorithm implements a task of assigning individuals a particular outcome,

or result, from a result space R. For instance, R = {0, 1} could reflect a binary

decision like “admit to college” or “don’t admit”; R = [0, 1] could reflect a prob-

ability such as “likelihood of defaulting on a loan”, and in classification, R might

be a probability distribution over a set of classes A, i.e. R = ∆A, where ∆S is

the set of probability distributions over a finite set S.viii The algorithm is then a

deterministic map f : V → R. X may be partitioned into several disjoint subsets

Xi, which we call groups. If there are g groups, we can write X =
∪g

i=1 Xi. Im-

portantly, our conception of groups does not allow for overlap. These groups are
viWe assume background familiarity with probability, which are discussed in almost every

introductory statistics text, e.g. Wasserman103.
viiThat is, the way we think about non-quantitative features that do not have natural repre-

sentations as numbers, such as race and gender, is agnostic to how those features might actually
be encoded in bits to the algorithm (e.g. one-hot encoding). In other words, we do not care
about details of data representation, e.g. we treat the feature of race as abstractly taking values
in {white, black, asian, …}.

viiiWe give a more formal definition in Part 2.
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often identified by having a value of a feature in common (e.g. race or economic

stratum). This is analogous to Roemer’s model of “types” of individuals.ix

Individual Fairness. The study of individual notions of fairness was jump-

started by Dwork et al.’s seminal 2011 work “Fairness Through Awareness”, often

identified as the origin of modern algorithmic fairness discussions, which we call

the “awareness” paper28,108. To make the concept precise we need a way to quan-

tify what it means for individuals to be similar. Dwork et al. obtain this by

assuming there is some task-specific function d : V × V → R that can be used to

quantify distances between individuals; specifically, d should be a metric, so to

guarantee “nice” properties about distances between individuals. Similarly, they

consider the presence of a metric between elements in R, which they narrow to

be the space of probability distributions over classes A in a classification setting:

D : ∆A×∆A → R.x The fairness constraint is a bound on variation in distances:

∀x1, x2 ∈ V, D(f(x1), f(x2)) ≤ d(x1, x2)
28.

Related works following this framework consider alternate constraints on dis-
ixA definition of groups in X in terms of features can naturally extend to a more general

partition of the overall space V . For instance, if groups are determined by race, we get a
corresponding a partition of V based on the value of the race feature. Indeed, the awareness
paper mentions this more general case in which a group is defined as a probability distribution
over V .28 We will be less general and focus on cases where X is finite and groups form a partition
of X, instead of thinking in terms of an infinite space of individuals V and groups as distributions
over V . However, we mention the definition of V to distinguish between a general infinite set of
“all possible people” versus “the people under consideration by this algorithm”.

xMetric spaces will be formally introduced in Chapter 2. The “awareness” can be interpreted
via the idea that the metric is “aware” of how individuals differ. As a further remark, setting
A = {0, 1} gives an isomorphism between ∆A and [0, 1] as sets of outcomes, by associating
r ∈ [0, 1] with the Bernoulli distribution with probability r in ∆A.
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tances. For instance, (ϵ, δ)-individual fairness corresponds to the stipulation

∀x1, x2 ∈ V, d(x1, x2) < ϵ =⇒ D(f(x1), f(x2)) < δ,

while other constraints bound the “additive distortion” between distances:

∀x1, x2 ∈ V, |d(x1, x2)−D(f(x1), f(x2))| < ρ108,37.

Although this definition is ambitious, its core weakness is that it may not be

obvious, or even tractable, how to define d given a task, especially if the given

data about individuals is flawed in the first place. This may make these concepts

implausible to work with. While some research has been done in estimating d from

data and oracles such as a “human fairness arbiter”, there has been comparatively

little discussion about implementing individual fairness in practice52,75,111,57.

Another view on individual fairness is inspired by legal notions of “protected”

attributes of individuals, analogous to rhetoric about “color-blind admissions”

and Dworkin’s separation of relevant and irrelevant circumstances. Under this

view, some features in the representation vector x might be deemed sensitive or

protected (we use the terms interchangeably), such as race or gender, and so should

not be explicitly used as inputs into decision-making processes110.xi Pragmatically

this translates to training an algorithm on only unprotected features by removing

protected features fromX. The question of what features are protected are usually

assumed to be decided by practitioners, but could also be answered empirically,

e.g. through surveying people42. Presumably as a contrastive reference, this
xiThis corresponds with the intuition that an applicant’s race or gender should be irrelevant

and not affect a decision-making process given that the process ought to treat individuals equally.
This is the broad idea behind color-blind admissions, which thus makes it ideologically opposed
to affirmative action programs62.
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condition is sometimes called fairness through unawareness. One issue identified

with fairness through unawareness is that even if a sensitive feature is not explicitly

used as an input to an algorithm, there might be redundant encodings: there may

be ways of determining discriminatory information from other features71.xii

Kusner et al. strengthen this notion by adopting the contributions of casual

inference, particularly the work of Judea Pearl, and the use of counterfactual

models in law and social science, leading to what they call counterfactual fairness.

At a high level, their setup considers algorithms to be representable as causal

models, directed acyclic graphs of relationships between different variables, where

a variable is a feature or a function of other features and variables. An algorithm

is counterfactually fair if it returns the same output for an individual regardless

of whatever values their protected features are set to in the causal model83,64.

Refinements of this approach that simplify computations have been proposed,

but overall this approach presents a modeling challenge at the outset where the

question of how to choose a “correct” causal model relating features does not

always have a clear answer20. Modifications to the metric-theoretic individual

fairness constraint taking inspiration from this perspective have been proposed.

For instance, letting V be written as U×W (and an individual x = (u,w)) and an
xiiThis is also noted in “Fairness Through Awareness”, where the strategy is named “fairness

through blindness”: for instance, when considering user data on social media, “there is a very
real possibility that membership in a given demographic group is embedded holographically
in the history. Simply deleting, say, the Facebook ‘sex’ and ‘Interested in men/women’ bits
almost surely does not hide homosexuality”28,55. In fact, Kusner et al. devise scenarios where
causal models can be structured such that ignoring sensitive attributes actually perpetuates
unfairness; the parallel here is comparable to Roemer’s reasoning that achieving equality of
opportunity actually requires an understanding, not ignorance, of individual types. Since effort
for him might be dependent on type, to wholly ignore type would preclude the possibility of a
faithful understanding of an individual’s circumstances64,88.
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algorithm as a map f : U ×W → R, where U and W represent unprotected and

protected features respectively, uniform individual fairness definitions proposed

by Xu and Strohmer bound the distortion between individuals accounting for

arbitrary values of W : ∀x1, x2 ∈ V , supz1,z2 D(f(u1, w1), f(u2, w2)) < d(x1, x2), or

d(x1, x2) < ϵ =⇒ supz1,z2 D(f(u1, w1), f(u2, w2)) < δ.

Group Fairness. Group notions of fairness, inspecting how algorithms treat

the groups Xi in aggregate, originate from an even more pragmatic viewpoint. As

context, inspirations for this perspective include statistical tests for bias in models

which have been used in policy and political science. For example, the concept

of disparate impact is used in legal discussions, denoting a policy practice that

exhibits a disproportionately adverse effect on protected groups (Xi that are de-

fined by sharing a value of a protected feature). One mathematical formalization

of this, the “80% rule” used by the United States Equal Employment Opportu-

nity Commission, sets R = {0, 1}, interpreting f(x) = 1 as individual x being

“selected” by the task. Given two groups X = X1 ∪X2, f violates this rule if

P (f(x) = 1|x ∈ X1)

P (f(x) = 1|x ∈ X2)
≤ 0.8;

put into words, if the overall probability that f returns 1 differs significantly

between the two groups34.xiii Here, an aggregate statistic is used to quantify the

idea that similar groups should be treated similarly.
xiiiA related legal notion is disparate treatment, where individuals might explicitly be discrim-

inated against based on protected attributes. Effectively, disparate impact can be viewed as
an unintentional version of disparate treatment110. A definition of algorithmic fairness serving
as a rigid formalization of disparate treatment is, however, harder to conceptualize. We might
make a comparison to “fairness through unawareness”, but as we have already seen, determining
whether or not a protected attribute is used is not as straightforward as one might think, and
there are also situations in which accessing protected attributes helps to accomplish fairness.
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Most group fairness definitions essentially differ in the particular statistics

they apply to measure and compare groups. Mehrabi et al. provide a summary of

other commonly-used metrics, some of which we list here71. Statistical parity, also

called demographic parity, considers the distribution of outcomes outputted by the

algorithm on groups, and limits the divergence between distributions for different

groups as measured by metrics between distributions. Thus members of groups

are equally likely to land in a set outcomes, and observing an outcome indicates

nothing about group membership28. In the case R = {0, 1}, it simplifies to equal

proportions of selection, matching the 80% rule: ∀i, P (f(x) = 1|x ∈ Xi) =

P (f(x) = 1). This makes the criteria one of the more well-known interpretations

of fairness given its close link to the definition of disparate impact8. Corbett-

Davies et al. provide a more granular version of this named conditional statistical

parity which conditions on unprotected features: using the notation x = (u,w) as

above, the constraint is ∀i, P (f(x) = 1 |u, x ∈ Xi) = P (f(x) = 1 |u)25.

Some definitions of group fairness apply to the setting where the task for f

is to predict a quality or outcome of the individual that exists but cannot be

measured; in these cases, we let f(x) be the prediction for the actual value y(x),

respectively abbreviated as ŷ and y whenever clear. Specifically, let y, ŷ ∈ {0, 1}.

A true positive (TP) occurs when ŷ = y = 1, and a true negative (TN) occurs

when both are 0. A false negative (FN) occurs when y = 1 but ŷ = 0, and a

false positive (FP) occurs when y = 0 but ŷ = 1. All individuals fall into one of

these four scenarios, and in terms of numbers TP + FN = |{x ∈ X : y(x) = 1}|

and TN + FP = |{x ∈ X : y(x) = 0}| (knowing TP is sufficient to calculate
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FN and vice versa, and similarly for TN and FP).xiv A natural interpretation of

group fairness is then equalizing the prevalence rates of these four metrics, or

functions of these metrics, among groups. Hardt et al. formalize definitions of

equal odds and equal opportunity in a setting with R = {0, 1}: f achieves equal

odds if ∀r ∈ {0, 1}, i, P (ŷ = 1|x ∈ Xi, y = r) = P (ŷ = 1|y = r); in other words,

the TP and FP rates should be equal across groups.xv Equal opportunity is a

weaker condition that only requires TP (equivalently, FN) rates to be equal across

groups; correspondingly, equalizing TN (equivalently, FP) rates is called predictive

equality 44,100.xvi Predictive parity seeks to equalize the positive predictive value,

or precision, of each group, defined as P (y = 1|ŷ = 1) = TP
TP+FP

, and treatment

equality seeks to equalize the ratio of errors FN
FP

71.

A further special case in the setting of predicting outcomes occurs when
xivThe setting is equivalent to binary classification with y = 0 and y = 1 as the classes. This

setup is often used in “screening problems” that select individuals from a group of candidates.
In sentencing ŷ might be a categorization of an individual as “high-risk” or “low-risk”, or in
diagnoses ŷ might estimate whether or not a patient has a disease59. These quantities reflect
some ground truth quality that is true or false but unknown to practitioners. Sometimes FNs
are more consequential than FPs (e.g. when the FN is a false negative diagnosis) or vice versa
(e.g. when the FP means an innocent defendant is punished). So working with definitions is
not enough; thought should be given to the significance and stakes of the task. These concepts
overall are sometimes referred to as the confusion matrix in the statistics literature100.

xvThe TP rate can be written as P (ŷ = 1|y = 1) = |{x: x∈X,f(x)=y(x)=1}|
|X| , conditioning on

x ∈ Xi when defined within group Xi; analogous expressions hold for the remaining rates. Thus
when there are two groups X = X1∪X2, this can be written as P (ŷ = 1|x ∈ X1, y = r) = P (ŷ =
1 |x ∈ X1, y = r). The authors note that their definition extends for any general R, but the
binary classification setting where R = {0, 1} is most prevalent in practice and thus the focus of
their analysis. Note the symmetry with predictive parity (defined later in the paragraph); this
analyzes algorithmic labels ŷ conditional on the actual truth y, while predictive parity does the
opposite. Choosing the suitable direction of conditioning is a decision for practitioners to make.

xviWe can interpret equal opportunity as ensuring that true positives in groups are correctly
“chosen” with equal probability. The authors provide examples where weakening the fairness
constraint from equal odds to equal opportunity can lead to increased utility, thus presenting a
situation where we may trade off the strength of fairness guarantees for better overall outcomes.
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y ∈ {0, 1} but R = [0, 1], such that the output of the algorithm reflects a

probability estimate, sometimes called a score, for the event {y = 1} (e.g. the

probability a defendant will re-offend within n years). Calibration, or test fair-

ness, is an adaptation of predictive parity to this scenario, considering the frac-

tion of correct positive predictions for each possible predicted score r ∈ R.

In the case of two groups X = X1 ∪ X2 this is the statement ∀r ∈ [0, 1],

P (y(x) = 1 | f(x) = r, x ∈ X1) = P (y(x) = 1 | f(x) = r, x ∈ X2). Well-

calibration is a stronger condition that hold that these probabilities should in

fact be r, i.e. the algorithm’s estimated probabilities are accurate. Since r could

take on uncountably many values in principle, this is often dealt with in prac-

tice by applying this condition over intervals of r in a kind of discretization112.

Balance for the positive class requires that individuals in the positive class in

reality, where y = 1, should receive the same scores on average, for two groups:

E(f(x)|y(x) = 1, x ∈ X1) = E(f(x)|y(x) = 1, x ∈ X2), and balance for the nega-

tive class is the same but applied to the negative class, i.e. individuals with y = 0.

These definitions also apply to arbitrary numbers of groups. Given the wealth of

statistical concepts to examine, there are several more group fairness definitions

which consider various other statistical criteria, a detailed review of which is given

by Verma and Rubin100.

More recent work has questioned what constitutes a group and how to select

groups in the first place. For instance, simply using “race” as a criterion to create

groups ignores issues of intersectionality and other possible salient ways of divid-

ing individuals into groups. At the same time, it is sometimes unclear what level
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of granularity defining a group should be (e.g. when grouping people by income

or age, how large the brackets should be). Kearns et al. introduced the idea of

“subgroup fairness”, proposing techniques that can audit for fairness criteria over

arbitrarily-many “subgroups” in an efficient manner57. Independently, Hébert-

Johnson et al. proposed multiaccuracy and multicalibration, fairness conditions

which consider some arbitrary collection of subsets C ∈ 2X , where 2X denotes the

set of subsets of X. Roughly, f is multicalibrated if it is calibrated for all of the

subsets. In their strict definition, C could be any collection of subsets, making

multicalibration unwieldly to work with in principle. To resolve this, the authors

consider situations where C consists of only subsets that are computationally effi-

ciently identifiable. They provide techniques to make a predictor multicalibrated

with a runtime complexity bounded by the theoretical maximum size of a circuit

testing for set membership in a certain element of C. The authors also work with a

more general prediction setting where individuals have true “latent” probabilities

to be predicted (y ∈ [0, 1]); details of their exact definition of calibration are found

in their paper112. With perhaps the most broad analysis out of the papers above,

Dwork et al. showed that multicalibration can be seen as a particular instance of

an outcome indistinguishability condition for predictors: general criteria where an

algorithm’s predicted probabilities cannot be separated from “true” probabilities

by a class of distinguishing strategies of varying computational complexities29.

Much of the literature on algorithmic fairness does not grapple with existing

definitions or propose new ones, instead focusing on auditing or correcting real-life

algorithms with respect to existing fairness criteria and devising new strategies to
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train new algorithms obeying those criteria in practice. Logically, in a field con-

cerned with real-life outcomes, work ought to extend beyond theory and consider

reality. Indeed, the last section in our review includes work motivated by a con-

troversial and publicized case study. The work reveals a troubling situation when

evaluating how fairness concepts relate to each other in principle: that conflicts

between definitions arise, and in fact are sometimes inevitable.

1.3 The Impossibility of Fairness

Given the wealth of fairness definitions above, we might hope that there exists

some sort of unifying relationship between them. Unfortunately, this is not the

case: parts of the literature critique and find fundamental limitations in the con-

cepts we have just covered. Thematically, we identify three main categories of

issues with algorithmic fairness: the inadequacy of concepts to ultimately prevent

undesirable outcomes; contradictions and incompatibilities between different fair-

ness criteria; and ontological critiques of the well-formedness of fairness criteria.

Inadequate fairness constraints. It is sensible to question whether or not,

for instance, using simple statistical criteria upon groups sufficiently captures an

intuitive sense of “fairness”. In fact, some work goes a further step back and

analyzes the limitations of working in an aforementioned local setting.

Caterina Calsamiglia, in her doctoral dissertation, continues in the tradition of

Young and Roemer in analyzing the tension between local and global distributive

justice. She interprets local equality of opportunity problems, i.e. the problem of

making welfare based only on characteristics deemed relevant and independent of
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irrelevant ones, as a decentralization of the global problem. She notes that policy-

makers are often limited in the scope of information they can access and have no

good way to gauge effort.xvii Moreover, individuals often face trade-offs between

investing effort in various parts of life (e.g. studying vs. part-time work), so effort

levels cannot be viewed as independent in different areas; there is an issue of “dis-

persion of information and interrelation of local environments”17. Consequently,

local problems typically do not coordinate to solve the global problem.

Calsamiglia proposes an example of two individuals P,R who study and play

basketball, identical in “innate ability” or potential but with R having better ac-

cess to educational resources. Both split effort between studying (eS) and basket-

ball (eB) with respective resource levels rS, rB. Calsamiglia models an individual’s

measured percentile of ability aS, aB as a function of resources and time spent:xviii

aS ∝ rS
√
eS, aB ∝ rB

√
eB, and the cost of studying and practicing as increasing

with effort c(eS, eB) ∝ (eS + eB)
2. Consider a college admissions officer and NBA

recruiter adopting a Roemerian point of view to evaluate P and R based on their

measured ability in studying and sports, ignoring the “irrelevant characteristics”

of local resources (since those are beyond P and R’s control), admitting an indi-

vidual at the ath percentile of ability with probability a. P and R optimize for

their welfare, aS + aB − c(eS, eB). While the innate talent of P and R are equal,

R has a higher marginal productivity in school (with respect to increasing odds

of admission) because of better resources, so their optimal strategy is to spend
xviiThis argument is much like that brought forth by the criticism of Matt Cavanagh, who

documents empirical examples where applying global or local equality of opportunity leads to
different policy recommendations18.
xviiiSince percentile values lie in [0, 100], this function is implicitly clipped to lie in that range.
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more time studying and less time on basketball relative to P . Consequently R

is more likely to be admitted to school, and the individuals are predisposed to

different outcomes despite having the same potential. Differences in irrelevant

characteristics (resources) threaten equality of opportunity17.

Suppose the admissions officer tries to achieve equal opportunity for P and R

being admitted. If they do this by artificially adding to P ’s value of aS to match

R’s in an affirmative action sense, then a discrepancy will arise in basketball. Indi-

viduals’ efforts remain unchanged, but R is now disadvantaged, having equal odds

of college admission but a lower probability of being recruited since P allocated a

higher eB. Alternatively, forcing P to spend additional effort until their aS is the

same as R’s leads to their spending less time on basketball and lowers their welfare

compared to the baseline scenario without intervention, making them worse off.

So solving only the local problem (admissions) is counterproductive to other parts

of the global problem (basketball). Calsamiglia shows that a way to guarantee

concordance between the local and global setting is by making local mechanisms

provide equality of rewards to effort, i.e. requiring two individuals with the same

relevant characteristics and effort to be treated identically, and that under some

technical conditions, decentralizing global equality of opportunity and equalizing

rewards to effort are equivalent. In the example, one way to do this is scaling aS

by a multiplicative, not additive, factor to account for differences in resources17.

Some critiques explicitly demonstrate how undesirable outcomes fail to be

captured by certain fairness definitions. In the awareness paper Dwork et al.

specifically target the insufficiency of statistical parity, for ensuring similar aggre-
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gate distributions of outcomes over groups still leaves room for bias. For instance,

an algorithm might choose individuals from a group for the sole purpose of claim-

ing statistical parity without any intention of being treated fairly later on, or to

“‘justify’ future discrimination... building a case that there is no point in ‘wast-

ing’ resources” on the group, as has been seen through interviewing “quotas” in

hiring28. Statistical parity also leaves open the possibility of discriminatory action

within subgroups of each group. Implicit here is a critique about the conceptual

limitations of group fairness and the undesirable “coarseness” of only considering

how a group is treated overall, the motivation behind developments of subgroup

fairness and multicalibration57,112. Concerningly, Liu et al. adopt a broader lens

and examine how fairness criteria impact algorithms and the individuals they

affect over time, showing that with repeated application of algorithms obeying

fairness criteria it is possible for the welfare of groups to actually decrease over

time. This critique targets a different shared nature of fairness constraints, in

that they do not consider the long run: they apply to algorithms taken as imple-

menting an isolated instance of a task, and do not take into account how they

fare with repeated application, being greedy in some sense67.

A common theme here is the idea of locality impeding global fairness by only

seeing a limited picture. Calsamiglia shows that under an assumption that indi-

viduals implicitly distribute effort over multiple settings, being narrow-minded by

ensuring a notion of fairness in one situation disregards other situations and can

lead to worse overall utility. Temporally “local” applications of fairness do not nec-

essarily lead to optimal results in the long term. Critiques of group fairness stem
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from the fact that they lack the sufficient granularity to ensure non-discrimination,

and defining a group may be unclear. Similarly, critiques of fairness through un-

awareness note that what a protected feature means is not clear. Further, even if

fairness through unawareness were obeyed and no group or sensitive information

could be observed, observe that many of the fairness concepts we have discussed,

such as Roemer’s evaluation of effort as relative to an individual’s type and Cal-

samiglia’s requiring an accounting for discrepancies in resources explicitly require

us to consider individual attributes that might be barred from consideration. This

is the classic equality versus equity debate: in situations where existing inequal-

ities exist between groups, being blind to protected features could lead to the

perpetuation of those inequalities and prevent equitable outcomes. In all these

cases, locally good intentions fail to capture the global truth.

Incompatibilities between different fairness criteria. One of the best-

known case studies in algorithmic fairness, and an example responsible for kick-

starting much discussion in the field, ironically provides a well-known example of

the limits of fairness definitions. It is found in the area of criminal sentencing.

In 2016, several years before the advent of large language models and dis-

cussions about artificial intelligence had entered mainstream discourse, the in-

vestigative journalism organization ProPublica published an article examining

a sentencing tool developed by a company, Northpointe. This software, called

COMPAS, was intended to aid with risk assessment efforts for criminals by com-

puting scores predicting the likelihood of recidivism. Such risk assessment tools,

including COMPAS, ProPublica claimed, despite being adopted at a growing rate
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through the United States, displayed systematic racial bias, what they called “ma-

chine bias”, in their decisions. Their conclusions came from analyzing data from

arrests made in Florida, seeing how the algorithm would classify them as likely or

unlikely to re-offend based on if the predicted score passed a certain threshold.xix

Controlling for other factors, black and white defendants were classified with the

same overall error rate, but non-recidivist black defendants were erroneously clas-

sified as high risk at almost twice the rate. In other words, the FP rate for the

group of black individuals was disproportionately high and the FN rate for the

group of white individuals was disproportionately low5. Similar reporting had

been done by the Associated Press and The Marshall Project the year prior9,96.

Northpointe published a lengthy objection and defense, characterizing the in-

vestigation as using inappropriate statistics. Calculating FPs and FNs, they ar-

gued, was nonsensical as such an action could only be done retrospectively (by

definition, it requires future knowledge on whether or not an individual actually

did re-offend, evidently unavailable at the time of sentencing). Instead, what

mattered, they claimed, and what the COMPAS algorithm was trained to sat-

isfy, was predictive parity. As we have seen, this meant that among black and

white individuals, the positive predictive value was roughly the same, i.e. the

probability that a defendant being classified as high-risk actually re-offending was

roughly the same regardless of race26. A fundamental incongruity was clear: the
xixUsing our notation, the algorithm itself produced values in the set R = {1, 2, . . . , 10}, with

“low risk” denoting scores up to 4. ProPublica’s analysis deemed an individual as high risk,
i.e. likely to re-offend, if their score exceeded 4. So they really considered a modified version
of COMPAS with the outcome set R′ = {0, 1} by adding the post-processing step r 7→ I{r>4},
where IA denotes the 0/1 indicator variable for event A4.
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same algorithm, applied on the same data but evaluated with different fairness

criteria resulted in drastically different judgments. What was fair as judged by

Northpointe turned out to display racial bias measured another way. ProPub-

lica later refuted Northpointe’s report, but noted that it was a known statistical

issue that systems that satisfy equal accuracy among subgroups could still be

unfair4,66. The debate has carried on: In 2020 Rudin, Wang, and Coker tried to

reconstruct COMPAS (the full model is proprietary) and claimed that while their

reconstruction violated Northpointe’s claim that risk scores depended linearly on

age90, while another defenses of COMPAS came from Jackson and Mendoza53.

Might it have been possible to, with access to the model behind COMPAS,

make modifications to rectify ProPublica’s concerning discoveries with North-

pointe’s fairness objective? Theoretical work published in response to controversy

showed that in fact, the answer was no: these contradictions were inevitable.

Soon after ProPublica’s investigation was presented, Kleinberg et al. published

an article providing a mathematical view into the issue at hand. They note that

COMPAS also satisfied the fairness criterion of calibration (with respect to the

groups of white and black defendants) at the cost of violating balance in the pos-

itive and negative classes, and that this violation must hold: unless groups have

equal base rates, no algorithm exists satisfying calibration and balance simultane-

ously. They analyze calibration in a setting where the outcomes (risk scores) are

predicted probabilities R = [0, 1] as follows: by definition, for each group Xi where

outcomes are collected into “bins” for each r ∈ R, the fraction of individuals from

Xi who are in the positive class (re-offended in reality) should be r of the size of
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the bin in expectation. Then the sum of scores given to Xi equals the number of

individuals in Xi in the positive class, call it µi, and the following equation holds:

(|Xi| − µi)ri,− + µiri,+ = µi

where ri,− and ri,+ denote the average score given to individuals of the negative

and positive class in Xi respectively. When comparing groups, their µi are equal

if and only if their base rates are equal; otherwise, the above equation for each

group yields a linear system in the variables ri,−, ri,+. Unless ri,− = 0 and ri,+ = 1

always, which is attainable only if the positive and negative classes are trivially

known and perfectly predictable (which would defeat the entire premise of needing

the algorithm), then a solution to the system must have them set to varying values

among groups, which by definition violates balance. This insight contextualized

ProPublica’s analysis: in COMPAS’s case, inbalance for positive and negative

classes manifested as disproportional FP and FN rates among groups60.

Chouldechova concurrently formulated a similar impossibility result, focusing

on a part of Northpointe’s response observing that the base rates for black and

white defendants were different, where the base rate (or prevalence) for group Xi

is defined as the proportion of individuals in a group Xi with a “true” positive

outcome, i.e. P (y(x) = 1 | x ∈ Xi) =
|{x:x∈Xi,y(x)=1}|

|Xi| . Then a simple equation can

be derived which relates the false positive and negative rates (FPR and FNR),

PPV, and base rate (p) within any given group:

FPR =
1

1− p
· 1− PPV

PPV
· (1− FNR).

This immediately begets a similar conclusion: if base rates between groups differ,
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then it is impossible to maintain the same PPVs, false positive rates, and false

negative rates between groups21. Since base rates were indeed different in COM-

PAS’s case, Northpointe, by choosing to equalize PPVs, implicitly ensured that

false positive and negative rates would differ between races. Again, COMPAS

made a tradeoff, choosing one version of fairness at the expense of another.

Notably, the quantities referenced in Chouldechova’s analysis are not novel to

algorithmic fairness, all coming from the statistics literature. Indeed, the problem

she describes is general and has been encountered in other settings. Essentially,

if some ground truth attribute intrinsically differs between groups, this imperils

the mutual coherence of different versions of fairness. In the above setting, this

attribute turned out to be differing base rates, explicitly used by Chouldechova

and equivalent to the quantities µi used by Kleinberg et al. Berk et al. further

delve into the connection between the above two results, concluding that “except

for highly stylized examples,” “the goal of complete race or gender neutrality is

unachievable”12. This conundrum is not limited to criminal justice: it is just one

way of mathematically substantiating the postulation in the Introduction that if

bias is “baked in” and inherent in the data to begin with, then it is impossible to

harness that data in a completely fair way. Thus, the foundational issue is working

with data in reality that contains bias (Here, we would need these ground truth

attributes to be equal across groups.)

As an example of this line of reasoning in a related field, Neil and Winship

examine the problem of auditing for racial discrimination in policing through an

example of sample data on police stops that differ for black and white people.
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They identify three broad issues. First, in the “denominator problem”, tests for

fairness using ratios as statistical criteria may use unsuitable values as the de-

nominators in these ratios (in this case, a disconnect between what an auditor

thinks the police are doing versus what they are actually doing, e.g. in which sit-

uations they conduct stops), which can lead to mismeasurements of bias. Second,

improper levels of data aggregation and stratification can mask or reverse trends

in data, e.g. if different races are found in different proportions geographically

and police conduct stops more frequently in places with more black individuals,

even if police are unbiased when conducting stops conditional on place the overall

pattern is biased.xx Third, they describe infra-marginality, whereupon different

distributions of behavior between black and white people leads police to conduct

stops differently depending on race. Discrimination in the form of this differential

treatment may lead to a higher or lower overall TP rate (hit rate of police stops),

so that statistical criterion reveals nothing about discrimination76. This last effect

has been documented through examination of historical data94.

The lack of harmony between fairness notions stresses a need for discretion

when it comes to choosing which notions to satisfy, since there is no “all-encompassing”

sense of fairness. However, some newer work has examined cases in which it is pos-

sible to achieve a compromise between different fairness criteria and overall utility

by slightly relaxing conditions (e.g. in (ϵ, δ) individual fairness, increasing the pa-
xxThis is the same idea captured by Simpson’s Paradox. In fact, this phenomenon was inves-

tigated in an early investigation of bias in admissions, dating from the 1970s. Studying data
from Berkeley graduate admissions revealed that female applicants were overall admitted at a
lower rate than male applicants, showing bias. However, conditional on department women were
admitted at a similar, if not higher, rate than men; the confounding aggregation factor was that
women tended to apply to more competitive programs (for all applicants) than men13.
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rameters ϵ, δ), exploring a Pareto frontier between competing notions and utility

in settings like learning specific classifiers or modifying outcomes post-hoc108,68.

Ontological limitations of fairness. The last category of challenge to algo-

rithmic fairness is an existential one which questions the validity of our conception

of algorithmic fairness, particularly coming from the perspective of law.

The legal scholar and sociologist Issa Kohler-Hausmann has shared several

influential critiques of our current understanding of fairness in practice. Her thrust

of argumentation concerns the way that academia conceives of and treats sensitive

attributes such as sex and race. For instance, in response to the Supreme Court’s

decision striking down affirmative action programs, she shared extensive critiques

regarding the meaning of race-neutral admissions in itself. Among her numerous

arguments, she highlights the fact that race often indirectly and unconsciously

factors into large parts of the application process when admissions officers evaluate

an applicant in light of their experiences and circumstances. It is intractable

to simply “excise [race] and leave social and cognitive antimatter in its place”;

achieving race neutrality cannot simply occur by pretending race does not exist,

but requires an acknowledgement that the current state of the world is manifestly

not equal on the basis of race, fundamentally affecting the application process and

colleges’ goals surrounding diversity62,63.

These conceptual difficulties in thinking about race as a simple feature of in-

dividuals is the broad idea unifying her criticisms discussed here. At the core is

the argument that attributes such as race and gender cannot only be thought of

as features of an individual, but rather constitutive phenomena that are responsi-
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ble for wholly determining one’s lived experience, development, and identity (c.f.

the impact of centuries of discrimination and ongoing prejudice when it comes

to attributes like race, sex, gender, and socioeconomic status; being born as a

black individual predisposes one to systematically different conditions, and be-

havior). As such, an individual’s race is not independent, nor even correlated or

confounded with, other features: it is in part constituted by all other features, and

likewise contributes to those other features’ meanings. To validly interpret the

feature of “wears dresses” requires “situated cultural knowledge” of gender (and

perhaps sexuality, ethnicity, etc.) and their associated social norms interacting in

a “complex interrelationship”61,76.

Consequently, notions of fairness treat the “thick ethical concept” of discrim-

ination reductively. Treating race, for instance, as an arbitrary biological feature

ignores the web of social constructs that make race the consequential feature it is

today. Kohler-Hausmann specifically takes aim at counterfactual methods, such

as those examined by Pearl and Kusner et al.. For instance, a popular technique

in social science of detecting discrimination in a scenario is by manipulating a

person’s race ceteris paribus and considering if they would be treated differently.

The issue here, Kohler-Hausmann claims, is not just that such a manipulation

cannot be practically implemented,xxi but also that it would wholly transform the

scenario such that the ceteris paribus assumption is a massive oversimplification;

to really understand discrimination requires normative evaluations surrounding
xxiAn example of discussion regarding the well-foundedness of using attributes like race and

sex as Glymour and Glymour, who discuss how reasonable “hypothetical intervention[s]” ought
to be viewed in the context of performing statistical inference40.
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relevant social meanings and practices61. To truly change the value of an individ-

ual’s feature likely entails changing other features in a comprehensive way; in our

language, if we had x ∈ X1, simply making the change x ∈ X2 without modifying

the values of x itself might make it “out of distribution” and dissimilar to other

individuals in X1, because to properly imagine the process of “moving” x to X1

requires an all-encompassing analysis of how the whole vector x would change49.

In other words, context is deep and rich, making it intractable to manipulate

features in isolation.

Finally, a question we can pose is how faithfully these definitions match the

spirit of the tradition led by Rawls. Reuben Binns investigates this topic, warn-

ing against ”the blunt application of fairness measures”. He argues that while in

principle both individual and group fairness share the same desire to fulfill egali-

tarian outcomes and treat individuals or groups consistently, they reflect different

worldviews: that disparities arise from personal choices, or unjust structures, re-

spectively. Furthermore, there is another kind of fairness in the form of individual

justice that existing measures do not capture: the idea that a person should be as-

sessed individually rather than on the basis of generalizations derived from others

similar to that person. Such an idea can be empirically found “in calls for pub-

lic administrators to exercise discretion rather than routine application of rules”.

Group fairness fails to capture this, as it follows the error of only testing for fair-

ness in a generalized way (on the basis of group membership), while individual

fairness makes an algorithm’s outcome for an individual close to that of similar

individuals (which admits a group generalization if we consider the group formed
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by that individual with others who are “close” by the metric)14.

1.4 Is Fairness Futile?

To sum our discussion up, we have presented an overarching narrative of an evo-

lution of sorts: that of how academia thinks about fairness from principled origins

to exact mathematical environments. It might also be apt to describe this narra-

tive as one of adaptation, where the ideas at hand reduce their breadth in favor

of depth. In a purely philosophical setting, there was free rein to define fairness

on the broadest grounds; moving into the world of economics and law demanded

the consideration of fairness as it applied within more particular situations; and

faced with the algorithm, we arrive at the numerous precise mathematical and

statistical definitions we have reviewed.

What to say of the bleak picture painted by the impossibility results of Klein-

berg et al. and Chouldechova, or the conceptual critiques of Kohler-Hausmann

and Binns? Foremost, the presence of impossibilities does not rend the project

of algorithmic fairness vain. Rather, the fact that there are conflicting concepts

can serve a reminder that thinking about justice in the real world, compared to

on paper, can be a far more challenging affair, and should serve as a warning to

practitioners to be thoughtful in what the goals of their algorithm are. As Binns

writes, “philosophers, lawyers, and other humanities scholars deal with many dif-

ferent and conflicting notions of fairness that have been the subject of intractable

debate for millenia”14. We might view these impossibility results as analogous to

Gödel’s impossibility theorem in pure mathematics, or uncomputability theorems
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in the theory of computation; while express theoretical foundational constraints

with a field, they do not mean that the field cannot be productive. Fundamental

limitations can be worked with as one might with constraints. Indeed, Kleinberg

et al. similarly point out that algorithms provide a new way to “let us precisely

quantify tradeoffs among society’s different goals”59. The action of defining what

is fair has always been implicitly performed by legislators, admissions officers,

economic advisers, and judges alike; when we design an algorithm this action is

simply made explicit and gives the opportunity to think about tradeoffs between

different kinds of fairness.

Similarly, the fact that the definitions we work with are flawed does not mean

they are worthless, and does not preclude their ability to do good. Having a

toolkit to inspect models and the types of decisions we are automating today

is a marked improvement from an alternative where we have no way to perform

critical analysis. Given that the field is especially nascent, with “Fairness Through

Awareness” being barely over a decade old (at the time of writing), it is not

unreasonable to expect the continual proposal of new definitions and results in the

years ahead, some of which might resolve the essential tensions we have covered.

The fact that there is much that is currently flawed and far more to be done

should serve as a motivator for progress, rather than being a message of futility.

Of course, progress need not be made only through the introduction of new

characterizations and measures, or the development of new techniques. Comple-

mentary to fairness, some parts of the literature engage in an epistemological

project of defining exact kinds of bias and how they arise. The second part of this
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thesis is comprised of our contributions on exactly this front.
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2
Differential Expressiveness and Data Bias

In Part 1, we referenced situations in which existing data is biased inevitably

led to the violation of some fairness criteria. For instance, in context of the

COMPAS case study, Chouldechova’s impossibility result took the form of an

equation relating FPR, PPV, and FNR for a group, dependent on the base rate of

the group. If base rates were approximately equal across groups, the discrepancies
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between these three quantities could be kept small. Similarly, the idea of “fairness

through unawareness” principally bars the possibility of differential treatment of

groups (if the protected features correspond with obvious group classifications

like race or sex) on the basis that group membership, if determined by protected

features, should not matter in making a decision. This is a priori a reasonable

naive assumption; if individuals all truly lived equally, no one racial group should

re-offend at a higher frequency. However, this is conspicuously not the case. The

data showed that black defendants re-offended at a higher rate, and it is not hard

to conceive of several reasons why: the world we are in still contains injustice,

e.g. systemically disparate economic situations that might drive the impoverished

to re-offend, inequalities in access to safety nets, or discriminatory practices and

racism in police actions. The source of the issue is the world we live in and its

portrayal in data. Consequently, an algorithm necessarily faces a choice between

how to be fair (and unfair) per Chouldechova, and fairness through unawareness

ends up having an adverse impact by disallowing the design of algorithms that

better combat existing inequalities through providing equity to specific groups

(hence constituting differentiable treatment). In other words, data is the root of

evil by running contrary to what we suppose is a just state of the world.

Indeed, the place occupied of data bias in discussions of algorithmic bias at

large can be viewed as a preliminary and omnipresent concern. Simply looking at

the design of an algorithm in itself does not provide a holistic picture if the be-

havior of the algorithm ultimately depends on qualities intrinsic to the data used

to train it. Since data forms the cornerstone of the entire process of creating mod-
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els (including, but not limited to, those using machine learning techniques) and

trends in data propagate down to outcomes, any attempts to address algorithmic

bias should not overlook opportunities, if applicable, to remediate problematic

patterns or aspects of the data itself. While addressing data bias is not a panacea

for eliminating algorithmic bias overall, tackling bias is certainly incomplete if

data remains unscrutinized and therefore potentially problematic.

The contributions of this part are twofold. The first section introduces a new

notion of data bias which we call differential expressiveness (DE), of which a

primer was given in the Introduction. Our treatment will be mostly empirical;

DE provides a new lens with which we can group together different concrete sce-

narios where bias in data has been documented or could arise. The second section

considers how DE fits into existing frameworks of machine bias, integrating a dis-

cussion on related work. Indeed, while the previous part of this thesis focused on

describing the evolution of fairness notions, there has also been work in algorith-

mic fairness seeking to describe and categorize the origin and treatment of bias

throughout the machine learning lifecycle. This literature already proposes sev-

eral different definitions of data bias, for which we will compare and contrast our

formulation of DE. Furthermore, we will extend a framework presented by Friedler

et al. for thinking about bias and fairness in their paper “On the (im)possibility

of fairness” (which we refer to as the “(im)possibility paper”) and discuss how

DE fits within this framework37. The conclusion of this part will briefly address

possibilities to audit for DE and review general approaches in the literature for

inspecting and reasoning critically about data.
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2.1 A Mathematical Language for Fairness

Before introducing DE, we define some mathematical vocabulary that will be

used throughout the chapter, particularly surrounding how individuals and groups

are represented in data. As we will see, algorithmic fairness inherits definitions

given in real analysis and probability. We contribute a unified mathematical

presentation of key concepts in the awareness and (im)possibility papers from first

principles that adds clarity and rigor. We build upon the notation in Part 1. Recall

that the overall space of (representations of) humans is V , from which we consider

a finite set X corresponding to (representations of) individuals that are actually

evaluated by an algorithm. X is split up into disjoint groups X =
∪g

i=1Xi. In the

case that we only care about one group X∗ we can compare it to the rest of the

population X = X∗∪ (X \X∗). Each element of X is a vector of abstract features

x that form a representation for a human individual. An algorithm implements a

task that maps (representations of) individuals to outcomes, f : V → R.

The definition of individual fairness in the awareness paper and related indi-

vidual fairness measures rely on the key idea of a metric space, consisting of a set

of elements and a function called a metric to express distances between elements.

This enforces more structure on V and consequently X.

Definition 1. Given a set M , a metric on M is a function d : M ×M → R that

obeys the following: for all ∀a, b, c ∈ M , (i) (a, b) ≥ 0 with d(a, b) = 0 iff a = b;

(ii) d(a, b) = d(b, a); (iii) d(a, c) ≤ d(a, b) + d(b, c). If d is a metric for M , the pair

(M,d) is called a metric space.
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The constraints of the metric make it mathematically “nice” and roughly

matching our intuition for what distance means in a set. Property (ii) is called the

symmetric property (distance should not depend on order of measurement), and

property (iii) is called the triangle inequality (the distance between two points

should not be able to be shortened by going through a third point). A set M

can have multiple metrics defined on it. In individual fairness definitions, we set

M = V and require d to be some task-specific metric. Any subset of a metric space

equipped with the same metric is also a metric space, since conditions (i)-(iii) con-

tinue to hold for any subset of points; becauseX ⊂ V , we may also view the actual

set of individuals under consideration (X, d) as a metric space. The elements of

M can be more complicated objects, such as probability distributions—as it hap-

pens, the fairness through awareness condition relies on the existence of metrics

in the space of probability distributions, since the setup there takes outcomes to

be distributions R = ∆A. Below are two examples.

Definition 2. Let M be a finite set and µ1, µ2 ∈ ∆M be two probability dis-

tributions defined on M . The total variation norm, sometimes called statisti-

cal distance, between µ1 and µ2 is defined as Dtv(µ1, µ2) = 1
2

∑
a∈M |µ1(a) −

µ2(a)|.i The relative ℓ∞ metric between µ1 and µ2 is defined as D∞(µ1, µ2) =

maxa∈M log
(
max

{
µ1(a)
µ2(a)

, µ2(a)
µ1(a)

})
.ii

To be precise, µ1 and µ2 should be thought of as probability measures on M ,
iThis definition has an analogue in measure spaces, generalizations of probability spaces

defined below. Given two measures µ1, µ2 on M with event set Σ, Dtv(µ1, µ2) = supE∈Σ |µ1(E)−
µ2(E)|89.

iiFor this to be well-defined we must assume µ1, µ2 give positive probability to all a ∈ M , or
we ignore all a such that µ1(a) = 0 or µ2(a) = 0. We implicitly make this assumption.
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which we fully define below. It is straightforward to show that Dtv is a metric

on ∆A through applying definitions. The definition of D∞ is one given by the

awareness paper and it is also a metric on ∆A. Many other notions of metrics

and “statistical distances” exist, which is briefly discussed in the Appendix. As a

practical matter, however, it is worth noting that the ranges of these metrics can

vary; the range of Dtv stays in [0, 1], whereas D∞ is unbounded. Dwork et al., who

focus on these two metrics because they lend themselves to efficient computation,

note that fairness through awareness requires that the hypothesized task-specific

metric scale similarly between similar and different individuals to the choice of

distribution metric28. In general, metric spaces let us exactly state what it means

for distances to be distorted:

Definition 3. Let (M1, d1) and (M2, d2) be two metric spaces and f : M1 → M2

be a map between them. For K > 0, f is K-Lipschitz continuous if it satisfies the

K-Lipschitz property: ∀a, b ∈ M1, d2(f(a), f(b)) ≤ Kd1(a, b).

Definition 4. Let f : M1 → M2 be a map as above. The additive distortion of

f , ρf , is the least upper bound on the differences between distances induced by

the map: ρf = infa,b∈M1 |d1(a, b)− d2(f(a), f(b))|.

Definition 5. Let f : M1 → M2 be a map as above. We say f is (ϵ, δ)-continuous

if ∀a, b ∈ M1, d1(a, b) < ϵ =⇒ d2(f(a), f(b)) < δ.

From Part 1, we can now identify fairness through awareness as enforcing

Lipschitz continuity as applied to M1 = V and M2 = ∆A with some choice of
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metrics and K = 1,iii while alternate formulations of individual fairness apply

constraints on distortion and what we have called (ϵ, δ)-continuity28,37,108. Some

of these conditions are stronger than others, discussed in the Appendix.

It is all well and good to associate similarity between individuals with metrics.

We may desire, however, to accommodate group fairness notions by thinking about

formulations of “distances” between groups. For instance, these distances could

quantify how dissimilar the aggregate outcomes assigned to different groups by

an algorithm are, or how the data representations of groups differ. The following

definitions introduce tools to make this idea exact by considering metric spaces

additionally endowed with measures, borrowing from probability theory37,89.

Definition 6. Given a set M and a set of its subsets Σ, a probability measure is

a function µ : Σ → [0, 1] satisfying µ(∅) = 0, µ(M) = 1, and for any collection

of disjoint sets {Ei} in Σ, µ (
∪

i Ei) =
∑

i µ(Ei). Note that µ is simply a formal

representation of a probability distribution over M which maps subsets of M

(events) to their probabilities. A probability space is a set M equipped with a

probability measure µ, written (M,Σ, µ). If there is also a metric d on M , then

M is a metric probability space, writable as (M,d,Σ, µ).iv

Definition 7. Given probability spaces (M1,Σ1, µ1) and (M2,Σ2, µ2), a coupling

measure over the Cartesian product M1 × M2 (with respect to µ1 and µ2) is a
iiiThe condition in the awareness paper explicitly notates the property is with respect to the

metrics d1, d2 by writing it as the “(d2, d1)-Lipschitz property”.
ivIn order for a metric probability space to be well-defined, there are some technical conditions

which we disregard, such as the fact that to make probabilities well-defined Σ should be a σ-
algebra and M must be compact 1. The foundations of probability carry over from measure
theory; indeed, a probability space can just be viewed as a measure space with the restriction
that the measure of the entire space is 1103.
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probability measure γ : Σ1 × Σ2 → [0, 1] such that for all E ∈ Σ1 and E ′ ∈ Σ2,

γ(E ×M2) = µ1(E) and γ(M1 × E ′) = µ2(E
′).

When we write “measure” in this thesis, we always implicitly mean “prob-

ability measure”, and throughout we will interpret a probability measure µ as

also denoting the distribution it represents. We will also keep Σ unwritten, as it

describes a technical condition and does not contribute much to our idea. Usu-

ally there is a natural choice of Σ, such as when M is finite, in which case we

choose Σ = 2M .v The definition of a measure is also simplified when M is fi-

nite: a measure µ can be defined based on the probability “mass” it gives each

element, provided that
∑

a∈M µ(a) = 11.vi The probability measure of any set of

elements is the sum of the masses of the elements. The constraint for a coupling

measure γ on (M1, µ1) × (M2, µ2) then becomes
∑

m′∈M2
γ(a,m′) = µ1(a), and∑

m∈M1
γ(m, a) = µ2(a). This simpler definition is enough for us, as we disregard

the theoretical infinite “universe” of individuals V and take M to be the finite

set of individuals considered by an algorithm. Then we can think about distances

between subsets in the context of those subsets representing groups of individuals.

Definition 8. Let (M,d) be a finite metric space. For two probability measures

defined on M , µ1, µ2 ∈ ∆M , the Wasserstein distance or earthmover distance

between µ1 and µ2 is defined by Wd(µ1, µ2) = minγ∈Γ
∑

a,b∈M d(a, b)γ(a, b), where

Γ is the set of all coupling measures over M ×M with respect to µ1 and µ2.vii

vThis is also the Σ implicit when talking about the set of probability distributions over a
finite set A, ∆A, to make the distributions well-defined.

viWe are abusing notation slightly by writing for singleton sets µ(a) = µ({a}).
viiIn full generality, this Wasserstein metric is a discrete case of the p-Wasserstein metric
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Wd is a metric on ∆M , so it is sometimes called the Wasserstein metric; a

proof that it is a metric is given by Philippe and Wolfgang23. The Wasserstein

distance extends naturally to describe distances between different metric spaces:

Definition 9. Let (M1, d1, µ1) and (M2, d2, µ2) be two finite metric probabil-

ity spaces. The Gromov-Wasserstein distance between the spaces is defined by

GWd(M1,M2) = minγ∈Γ
∑

(a,b)

∑
(a′,b′) |d1(a, b) − d2(a

′, b′)|γ(a, a′)γ(b, b′), where

(a, b) and (a′, b′) are elements of M1×M2 and Γ is the set of all coupling measures

over M1 ×M2 with respect to µ1 and µ2.

As it turns out, Mémoli shows that GWd is a metric on the space of metric

spaces, setting aside some technical details (e.g. up to isomorphism)72.

Now we change our notation to specifically address our setup with a finite

set of individuals X. Consider partitions of X into g groups, X =
∪g

i=1Xi. (X

replaces M above, and the Xi are disjoint subsets.) Given a measure on X, the

Wasserstein distance extends naturally to describe distances between groups.

Definition 10. Let X be a finite set with groups {Xi}. If X has a probability

measure µX , then we define the induced probability measure for Xi, which is also

a probability measure on X, as follows: for x ∈ X, µi(x) =
µX(x)
µX(Xi)

if x ∈ Xi and

0 otherwise. If X does not have a measure, the induced probability measure is

naturally defined by setting µX to be the uniform distribution that assigns weight
1

|X| to each element.

with p = 1: Wd(µ1, µ2) = infγ∈Γ

(∫
a,b∈M

d(a, b)pγ(a, b)
)1/p

. A similar generalization exists for
Gromov-Wasserstein distances defined below that relies on the additional definition of metric
couplings, analogous to (measure) couplings as we have defined them; see Mémoli72.
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Remark 1. Let Xi, Xj be groups in X. As a slight abuse of notation, we define

Wd(Xi, Xj) to mean Wd(µi, µj), where µi and µj are the induced probability

measures on Xi and Xj.

The takeaway is that we can define Wasserstein distances between groups

using a measure on X. In the case that no measure is specified, the µi defined

above represent uniform distributions supported on each Xi, like indicators for

group membership; this is implicitly what we mean when we describe Wasserstein

distances between subsets when no measure is specified.viii

There is an important distinction between how Friedler et al. and Dwork et

al. use Wd. For the latter, since they consider algorithms with R = ∆A, there is

a way to define a probability measure for Xi over A instead of X, based on the

average distribution assigned to individuals in Xi by an algorithm.

Definition 11. Let X be a finite set with groups {Xi} and let f be a map from

X to ∆A. The outcome probability measure for Xi, which is a probability measure

over A, is the average of outcomes over Xi, µout
i = 1

|Xi| ·
∑

x∈Xi
f(x).

We verify that outcome probability measures are probability measures in the

Appendix. Outcome probability measures can be found directly from f ; X need

not have a metric or probability measure. Also, outcome probability measures

lend themselves exactly to the fairness definition of statistical parity, by definition;
viiiWhile our presentation only considers finite sets, these definitions also extend to a general

case where X is continuous but measurable. For instance, we could conceive of X as a compact
subset of Rn, in which Xi are further subsets of X; then for an arbitrary subset S ⊆ X,
µi(S) =

µX(S∩Xi)
µX(Xi)

. However, in continuous settings it is harder to think about individuals, since
single points in continuous sets have measure zero. We stick with the more tangible case of
having X finite for simplicity.
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Figure 2.1: An illustration of the group space X that arises from the space of representations of
individuals X with a partition into groups. Groups in X are elements in X .

Dwork et al. define (ϵ-)statistical parity between two groups X1 and X2 as the

condition Dtv(µ
out
1 , µout

2 ) < ϵ. By contrast, since induced probability measures are

over X they have no direct link to statistical parity.

Finally, Friedler et al. consider, given X =
∪g

i=1Xi, the set of groups, X =

{X1, . . . , Xg}. Each element in X constitutes a group in X, so we identify Xi as

a subset of X as equivalent with Xi as a point in X .

Proposition 1. Suppose X has metric dX and probability measure µX . Then the

group space X as defined above is a metric probability space, with respect to the

metric dX (Xi, Xj) = Wd(Xi, Xj) and the naturally-induced probability measure

µX defined by µX (Xi) = µX(Xi).ix

Proof. See Appendix.

We call X the group space, as compared to the individual space X; see Figure

2.1. Given a metric, probability measure, and group partition on X, X is induced

(can be defined). Finally, consider two metric probability spaces (X, dX , µX) and
ixWhile Friedler et al. do not explicitly define µX explicitly, this accords with the “natural

way” to define a measure on X .37
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(Y, dY , µY ) with a map m : X → Y , which we can interpret as a mapping from

one representation of individuals to another. Assume that each individual in X

can be identified with a counterpart in Y , that is, there is a bijection X → Y .

Then groups can also be consistently identified in both X and Y (Xi is mapped

to Yi), and we can compare the group spaces X and Y .

Definition 12. Given two metric probability spaces (X, dX , µX), (Y, dY , µY ) with

g groups (i.e. subsets) and group spaces X and Y , the between-groups dis-

tance is defined as ρb(X ,Y) = GWd(X ,Y)

(k
2
)

. The within-group distance is defined

as ρw(X ,Y) = 1
g

∑g
i=1 GW i(Xi, Yi), viewing Xi as a metric probability space with

metric dX and the induced probability measure µi from µX , and similarly for

Yi. The group skew between X and Y is σ(X ,Y) = ρb(X ,Y)
ρw(X ,Y)

. In the case that

ρw(X ,Y) = 0 (when X and Y have identical structure), σ(X ,Y) can be com-

puted by adding O(δ) random noise to both numerator and denominator.

The intuition here is that Wd and GWd quantify how “different” groups are

in the context of metric probability spaces. The Wasserstein distance is called

the earthmover metric because we can roughly visualize a probability distribution

defined by a probability measure as a pile of earth; the metric then quantifies

the minimum amount of “work” needed to complete the task of moving earth

from one distribution to another, where the work factors in the amount of earth

(expressed by the probability masses of the measure to be moved) and the distance

moved (expressed by the metric).x While more abstract, the Gromov-Wasserstein
xIn fact, the Wasserstein metric comes up in an applied mathematics problem expressing

exactly this idea, the optimal transport problem, which can be solved via linear programming
techniques73.
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distance carries the same idea. If two groups are “close” in a space, then the

“work” done to move between the distributions is smaller as conveyed by Wd, and

similarly so when considering how “close” the representations of a group are in

different spaces as conveyed by GWd.

Dwork et al. and Friedler et al. use the Wasserstein distance in categorically

different situations. The former apply it in determining the degree to which an

algorithm has “separated” groups in terms of the probability distributions the al-

gorithm outputs, while the latter use it when comparing distances between groups

across different spaces of representations. Particularly, they consider a bijective

observation process, m : X → Y , which modifies representations of individuals.

Their definitions of between-groups and within-groups distances represent how

the process globally distorts groups with respect to each other and the individual

distortion of each group when going from X to Y . Friedler et al. take high group

skew to be a sign that f treats groups more differentially since the overall distor-

tion between groups is disproportionately high, thus possibly indicating bias in

the observation process37.

Before applying these concepts, we shift our attention to an empirical discus-

sion of differential expressiveness.

2.2 Defining Differential Expressiveness

In this section we give a formal characterization of what we mean by differential

expressiveness (DE). To our knowledge, while the concept behind DE is intuitive

and widespread, no work in the literature thus far specifically describes it. One
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overarching comment to make about DE is that it is a “local” concept, in that

it only examines single features in isolation. Sources of bias can and do manifest

in multiple features, and simply considering the values within one feature reveal

only a fraction of the bigger picture. (In part, this is why more sophisticated

mathematical tools like the ones defined above are introduced, in attempts to

describe a more encompassing worldview.) Furthermore, we make no claims that

our treatment of the idea of DE is comprehensive; it is certainly feasible to think

there are more rigorous mathematical characterizations waiting to be written on

this topic. Nonetheless, we hope our discussion lends itself to a more nuanced

approach to how we think about the features we must choose to constitute human

representations whenever we use an algorithm.

Consider the input data for an algorithm f to be the finite set of individuals

x ∈ X, where each individual is represented by k abstract features in the data

x = (x1, . . . , xk). The focus of DE is characterizing data bias, i.e. problems

inherent in the k features that portray each individual, independent of what f

may be. DE specifically focuses on individual features within the feature vector

that serves as a representation of each individual x. As another minor abuse of

notation, we associate a feature with its index within feature vectors. That is, if

we use θ to denote a feature (e.g. race, income, etc.) we also treat θ as an index

for the feature it represents, θ means the θ-th feature, xθ, for all x. Let Θ be the

set of values θ can take, e.g. a set of races {white, black, . . . } if θ is race, or R≥0

if θ is income. Recall our rough definition of DE from the introduction:

Definition 13. (DE, informal definition). A feature θ of a dataset of individuals
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X is differentially expressive if its values cannot be consistently interpreted among

different individuals in X.

There are two main senses in which we can characterize θ not being consistently

interpretable. First, θ might take on systemically different values depending on the

individual when we have no reason to expect those systemic differences to exist.

Second, the same value of θ might mean categorically different things depending on

the individual, and thus judging two individuals based on a value of θ in the same

way would be unfaithful. While these characterizations might conceivably apply

on the level of individuals,xi the fact that we want to discuss systemic differences

manifestly lends itself to talk about DE in the context of groups (where the way

we think about θ is different in each group) by considering the distribution of

values of θ in that group. As shorthand, we refer to the distribution of values of a

feature θ as just “the distribution of θ”. Now we may more precisely say of these

two characterizations that the first describes a situation where the distribution of

θ within one group systemically differs from the rest of the population, and the

second describes a situation where the members of a group interpret θ in a different

way from others. There is a kind of symmetry between these two characterizations.

In the first, we imagine that the values of θ should be distributed approximately

equally between groups, but in reality they are not. In the second, we imagine

that the meaning of θ is categorically different between groups, though values of

θ could be distributed approximately equally between groups. In essence, there is
xiFor instance, we could think of a scenario in the second characterization in which θ means

something different to everyone in X, e.g. if some adversary has tainted the data collection
process such that different data is presented the same way to the data curator. However, this
example is a generic one reflecting issues with methodology.
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a disconnect between a value we see of θ and the meaning of what we believe θ

ought to really indicate.

Now we can be more precise in defining these two characterizations. We name

them, respectively, distributional DE and semantic DE. The first relies on us

having some way to quantify the extent to which two distributions are different.

There are several different ways to do this, but for our definition we are agnostic

to the particular choice. Additionally, in real-life situations we often encounter

datasets with missing data, in which case we need some way to represent a value

for θ corresponding to missing data. If Θ is the set of values that θ canonically

takes, as shorthand we let Θ̃ = θ ∪ {∅}, where ∅ represents the special case that

the value of the feature is missing. A model might specify that feature values are

Θ, whereas Θ̃ is what we might see in practice with real data. Finally, in our

definitions we only consider the case of two groups X = X1 ∪ X2 for simplicity,

but our definitions of DE can also apply to comparisons between two groups Xi

and Xj, or between a group and the rest of the population Xi (in which case we

can just set X2 = X \Xi).

Definition 14. Let θ be a feature in our set of representations of individuals

X taking on possible values Θ in principle. Let Θ̃ be the set of possible values

of θ in practice as defined above. Let X1, X2 be two disjoint groups such that

X = X1 ∪X2. Then for i ∈ {1, 2}, we define µθ
i ∈ ∆Θ̃ to be the (measure for the)

empirical distribution of θ within Xi.

In the definition above we refer to the standard empirical distribution from

probability. Suppose first that Θ is finite, which captures a wide variety of features
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in practice. Some examples are exam scores, binary indicators, and discretizations

of continuous measurements, e.g. where instead of raw income we work with

income brackets or “bins”. In this case, the empirical distribution is defined as,

for t ∈ Θ̃ as µθ
i (t) =

1
|Θ̃|

∑
x∈Xi

I{xθ=t}. In the case that Θ is infinite (e.g. Θ = Z

or contains real numbers), we can think of µθ
i as a mixed distribution where θ = ∅

with probability 1
|Θ̃|

∑
x∈Xi

I{xθ=∅} and otherwise the distribution of θ is governed

by its empirical cumulative distribution function over Θ.103

Distributional DE. Our first characterization of DE is essentially distribu-

tions of θ being different when they ought not to be. If this is the case, then

something is wrong with our assumption, and that there may be a disconnect

between our conception of the feature and how it actually manifests in groups.

We can now describe this in mathematical language.

Definition 15. (DE, characterization 1.) Given a function D that measures dif-

ferences between distributionsD : ∆Θ̃×∆Θ̃ → R, we say θ is (D, ϵ)-distributionally

differentially expressive (distributionally DE) if D(µθ
1, µ

θ
2) > ϵ.

Another suitable name might be “statistical DE”. Choices for D include dis-

tance functions between distributions—e.g. Dtv or D∞ as given in the awareness

paper28. Picking an appropriate ϵ requires knowledge of D, since the ranges of

these metrics are different. There are several other functions which can be used to

quantify statistical distance, or metrics between distributions; see the Appendix.xii

Other choices for D could be adopted from the statistical literature. As an
xiiFor instance, while KL divergence is not a metric because it is asymmetric, there might be

situations in which we want to exploit this property, by measuring the divergence of some µθ
i

relative to the rest of the population.
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example, suppose we make the modelling assumption that each µθ
i should follow

some parameterized distribution D(ϕ) (i.e. θ in each group follows a distribution

family D over Θ), such as a Normal distribution over the real numbers or an

interval thereof, or a Poisson distribution over the positive integers. Then when

analyzing the distribution of θ between two groups, we could narrow our focus

to consider only the x where xθ = ∅; fit relevant parameters to the empirical

distributions of θ over the two groups to get estimates of the parameters ϕ1, ϕ2 of

those distributions; and evaluate some notion of the distance between these two

sets of parameters, such as via the wealth of statistical tests using p-values that

exist for testing equality of distributions. The modelling assumption that each

µθ
i follows a distribution family can be a strong one, however, and this method

ignores the empty values ∅, which may be an important consideration. To be

more general, other well-known statistical tests for equality of distribution that

are agnostic to a particular choice of distribution, such as the Kolmogorov-Smirnov

test, which can also be extended to support mixed distributions such as Θ̃.103 Since

our discussion here remains in the abstract, we do not explore the mathematical

details and results that follow from particular choices of D, but such an inquiry

may prove to be a promising line of future theoretical work.

In some cases, we might be concerned with the applied problem for which

the availability of a feature is unequal for different groups, i.e. the prevalence

of the empty value ∅ is disproportionately high in one group. This might be

indicative of pervasive bias in the data collection process whereupon one group

might be underrepresented in existing circumstances from which measurements

61



of the feature are made; thus, the fact that existence of data for θ itself is not

guaranteed to be consistent between groups is problematic. This is even more

fundamental than issues pertaining to the distribution of θ, since it tells us that

the process of even getting values for θ is flawed. However, we remark below that

we can view this as a kind of distributional DE.

Definition 16. Let PEθ
1 and PEθ

2 denote the proportion of empty values of

θ in X1 and X2, respectively: PEθ
i = 1

|Xi|
∑

x∈Xi
I{xθ=∅}. Then we say θ is ϵ-

existentially differentially expressive (existentially DE) if |PEθ
1 − PEθ

2 | > ϵ.

This is a simple definition that directly compares the proportions of empty

values of θ. A weakness of this definition is that when the sizes of Xi are small,

our values of PEθ
i might be noisy due to small sample variability. In the Ap-

pendix we give a definition adapted from statistics that uses the two-proportion

test to account for this. Nota bene that we can frame this “data existentiality”

definition in terms of the distributional DE definition by specifically defining D

as D(µθ
1, µ

θ
2) = |µθ

1(∅) − µθ
2(∅)|. So we view existential DE as a special case of

distributional DE, rather than a wholly separate characterization.

Semantic DE. Now consider our second characterization of DE. To express

the discrepancy between the values of θ that we observe in X versus the actual

meaning of the values to individuals, we can conceive of θ as being a proxy mea-

surement for some underlying feature, θ∗, that exists but is hidden. Let θ∗ take

values in Θ∗, which we assume does not contain empty values (θ∗ will always be

well-defined for an individual). For instance, θ∗ could be “academic talent” and θ

could be “GPA”. We really mean to measure the feature θ∗ but observe θ. We can
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imagine some observation process that translates and crystallizes values of θ∗ into

observed values of θ as collected in X. This process might have statistical noise

such that the same value of θ∗ could materialize as multiple values of θ. More im-

portantly, θ might be “coarse” and destroy information about θ∗, and individuals

might view θ differently than they view θ∗, causing a semantic discrepancy. To

be clear with notation, θ∗ and θ are features; t∗ ∈ Θ∗ and t ∈ Θ̃ are values the

features can take.

We assume that all members of a particular group possess the same interpre-

tative relationship between values of θ∗ and θ. Specifically, let Rθ
i be the binary

relation between Θ∗ and Θ̃ that associates, for members of Xi, values of θ∗ and

θ that are regarded as equivalent for the group. In other words, if (t∗, t) ∈ Rθ
i ,

then for members of Xi, θ∗ = t∗ means the same thing as θ = t.xiii We call Rθ
i

the semantic relation of Xi. Now define for t∗ ∈ Θ∗ the (semantic) image of t∗

as Rθ
i (t

∗) = {t ∈ Θ̃ : (t∗, t) ∈ Rθ
i }. Similarly, define the (semantic) preimage of

t ∈ Θ̃ as (Rθ
i )

−1(t) = {t∗ ∈ Θ∗ : (t∗, t) ∈ Rθ
i }. Here, Rθ

i (t
∗) is the set of observed

values of θ manifested by the unseen meaning θ∗ = t∗, while (Rθ
i )

−1(t) is the set

of unseen meanings of θ∗ corresponding with the observation θ = t, according to

members of Xi.xiv See Figure 2.2.
xiiiWe specify Rθ

i as a binary relation to capture a general sense of mappings between values.
It is reasonable to think that due to noise or randomness in the process that transforms the
feature θ∗ into the feature θ, one value of θ∗ corresponds to multiple values of θ—and vice versa:
one value of θ could possibly mean many different things in truth (i.e. in terms of θ∗) to Xi

and these several meanings have been conglomerated in our proxy, thus destroying information
about the original expressiveness and variation of θ∗. This also accommodates the restricted
setting where each value t of θ corresponds to one value of θ∗, such that there is a single “true”
meaning of t for members of Xi, i.e. when Rθ

i is a function; and vice versa, when Rθ
i is injective.

xivOur definitions have been in terms of Θ̃ rather than Θ to also accommodate missing values.
If missing data is a comprehensive issue that affects all individuals, it might be the case that
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Figure 2.2: An example of the semantic relations Rθ
1 and Rθ

2, which associate semantically equiv-
alent values in Θ∗ and Θ̃ for each group. The preimages of one value t of θ could be multiple
values in Θ∗, and could differ between groups (the root cause of semantic difference).

Our intuitive definition of “values of θ meaning different things to different

groups” could take the form of the following condition: there exists some t ∈ Θ̃

such that (Rθ
1)

−1(t) 6= (Rθ
2)

−1(t). However, this is an incredibly weak condition,

since it only requires that there is at least one value where the preimages are not

identical. Especially if Θ∗ and Θ̃ are not finite sets, e.g. if they are intervals

of real numbers, this also does not capture the idea that the extent to which

preimages differ can vary. Certainly, having (Rθ
1)

−1(t) and (Rθ
2)

−1(t) differ by

one element for one particular t is less concerning, as far as semantic difference

is concerned, than having (Rθ
1)

−1(t) and (Rθ
2)

−1(t) be disjoint for all values of t.

Hence, like our definition of distributional DE above, we suppose the presence of

(Rθ
i )

−1(∅) = Θ∗ for all i. However, there could be scenarios where the extent to which we have
missing data depends on the group, e.g. if less data is available for a disadvantaged group to
evaluate because they have been methodologically overlooked, or if a more advantaged group
has the power to purposefully redact data. Differential circumstances of data provenance and
control could make the observation of a missing value, θ = ∅, also mean different things based
on the group!
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some generic function D that quantifies differences between subsets of Θ∗. Now

we can precisely state our second characterization:

Definition 17. (DE, characterization 2.) Given a function D that quantifies

differences between sets of possible values of θ∗, D : 2Θ
∗ × 2Θ

∗ → R, we say θ is

(D, ϵ)-semantically differentially expressive (semantically DE) if∑
t∈Θ̃

D
(
(Rθ

1)
−1)(t), (Rθ

2)
−1(t)

)
> ϵ

if Θ̃ is discrete, and ∫
t∈Θ̃

D
(
(Rθ

1)
−1)(t), (Rθ

2)
−1(t)

)
dt > ϵ

otherwise.

Intuitively, we consider, for all possible values t of the proxy feature θ, the

difference in the meaning of θ = t between the two subsets. If the aggregate

“difference in meaning” over all t is large enough, we say θ is semantically DE.

Remark 2. We could generalize the definition of the semantic relation by saying

there is a probabilistic process generating values of θ from values of θ∗, such that

(Rθ
i )

−1 is a distribution over Θ∗, rather than a set (under that perspective, our

current definition associates a value of θ, t ∈ Θ̃, with a uniform distribution over

the set (Rθ
i )

−1(t)).

Later in this thesis, we will also consider the fact that relationships between

different θ∗ and θ could be many-to-many, and our definition of Rθ
i is unable to

capture this notion. An intriguing line of research might be to extend the concept

of the semantic relation to capture these generalizations.
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As with D in the definition of distributional DE, the choice of D is purpose-

fully left broad. A simple definition could be, given two subsets S1, S2 of Θ∗,

D(S1, S2) = m(S1∆S2), where ∆ here means the symmetric difference and m

measures the size of the set (e.g. cardinality if the sets are finite). However, this

ignores how far apart the elements exclusive to S1 are from the elements exclusive

to S2.xv If Θ∗ is endowed with a metric, an alternate choice for D could be the

Hausdorff distance, commonly used as a measure of how different two sets are50.

Again, we will not delve into results from choosing particular D, but such an

exploration would be a natural extension of this idea.

We can get a more concrete definition of semantic DE if we add a restriction

that Rθ
i should be injective, so that every value t ∈ Θ̃ is associated with one value

t∗ ∈ Θ∗;xvi then for all t, t∗ is the unique “true meaning” of θ = t for individuals

in Xi. In this case, we can write a simpler definition of semantic DE that does

not have to consider differences of sets of values in Θ∗:

Definition 18. Suppose that Rθ
i is injective, such that (Rθ

i )
−1(t) is a singleton

set {t∗} (or empty).xvii Identify (Rθ
i )

−1(t) with this value t∗ if it exists. Given a

function d that quantifies differences between possible values of θ∗, d : Θ∗×Θ∗ →
xvFor instance, suppose Θ∗ = N represents “level of talent”, S1 = {1, 2, 3, 4}, S2 = {1, 2, 3, 5},

and S3 = {1, 2, 3, 10}. It is natural to think that S3 and S1 are “further apart” than S1 and S2,
but the definition of D does not capture this.

xviE.g. by assuming we are in the special case where there are no missing values, so that
(Rθ

i )
−1(∅) = {}.

xviiThe preimage of t could be empty since we do not stipulate that Rθ
i be surjective. In that

case, we can just disregard that value of t.
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R, we say θ is (d, ϵ)-semantically DE if∑
t∈Θ̃ : both (Rθ

i )
−1(t) exist

d
(
(Rθ

1)
−1(t), (Rθ

2)
−1(t)

)
> ϵ

if Θ̃ is discrete, and∫
t∈Θ̃ : both (Rθ

i )
−1(t) exist

d
(
(Rθ

1)
−1(t), (Rθ

2)
−1(t)

)
dt > ϵ

otherwise.

As injective relations are relations, this is a special case of Definition 17.xviii

These characterizations of DE are not mutually exclusive. A feature θ could

be distributionally DE as measured between groups, while also being an unfaithful

proxy for some underlying feature. As long as we think of θ as a proxy, we can

evaluate θ using D based on the data we see while also conceiving of some D (or

d) to hypothetically compare and contrast θ against an underlying feature. One

way to give a unified relationship between these forms of DE is as follows: whereas

distributional DE describes what is problematic about the features we observe at

face value, semantic DE concerns what might be problematic about an unseen

process that produces these features. In particular, distributional DE might be a

consequence of semantic DE, if the reason distributions of a feature differ between

groups is that the groups interpret the feature differently. We can formalize this

idea by saying that though θ∗ might have the same distribution in all groups, the

Rθ
i distort those distributions to cause distributional DE in θ.

xviiiNotice that all functions are relations: g : Θ∗ → Θ can be written as the relation {(t∗, t) :
g(t∗) = t}. A further restriction we could make is specifying that Rθ

i be an injective function,
which is easier to conceptualize. However, simply requiring that Rθ

i be a function from Θ∗ to
Θ̃ is not sufficient, as preimages might not be singleton sets. E.g. if Θ∗ = Θ = R and Rθ

i is the
squaring function, we have (Rθ

i )
−1(1) = {−1, 1}.
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Proposition 2. Suppose X1 and X2 share the same distribution for values of

the underlying feature θ∗, µ∗ ∈ ∆Θ∗.xix Then the empirical distributions of θ for

each group are determined by their semantic relations. Specifically, µθ
i is defined

for all t ∈ Θ̃ as µθ
i (t) ∝ µ∗ ((Rθ

i )
−1(t)

)
. In the opposite direction, the following

relationship holds: for all i and t∗ ∈ Θ∗, µ∗(t∗) ∝ µθ
i

(
Rθ

i (t
∗)
)

(assuming Θ̃ is

discrete; otherwise, the above holds with the sum replaced by an integral).

At this point we have introduced several measures on several different spaces;

a breakdown is given in the Appendix. We can equivalently write µθ
i (t) ∝∑

t∗ ∈Θ∗ µ∗(t∗)I{t∗ ∈ (Rθ
i )

−1(t)} and µ∗(t∗) ∝
∑

t∈ Θ̃ µθ
i (t)I{t∗ ∈ (Rθ

i )
−1(t)}, observing

that the events {t ∈ Rθ
i (t

∗)} and {t∗ ∈ (Rθ
i )

−1(t)} are equal. The statements

above use proportionality constraints rather than equalities, because we need to

normalize to get a measure. In particular, we can write

µθ
i (t) =

µ∗ ((Rθ
i )

−1(t)
)∑

t′∈Θ̃ µ∗
(
(Rθ

i )
−1(t′)

) ; µ∗(t∗) =
µθ
i

(
Rθ

i (t
∗)
)∑

t∗′∈Θ∗ µθ
i

(
Rθ

i (t
∗′)
)

swapping the sum with an integral if needed. Proofs follow from definitions:

θ = t iff θ∗ ∈ (Rθ
i )

−1(t), so the overall probability mass put by µθ
i on t should be

proportional to the sum of the probability masses put by µ∗ over the set (Rθ
i )

−1(t).

The opposite direction proceeds analogously.

There is a duality in how semantic relations are used when thinking about the

use of proxy features. In the “forward direction”, they give one explanation for

how distributional DE arises as described above. In the “backward direction”, we

get constraints on how Rθ
i and µθ

i are related.
xixAs a technical note, if |X1| 6= |X2| then it may not be possible for the groups have identical

empirical distributions. We can think of µ∗ as being a common data distribution from which
“crystallized” values of θ∗ would be drawn across the two groups, if we could observe θ∗ directly.
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Theorem 1. (Distributional DE arising from semantic DE) Suppose θ is a proxy

feature for the underlying feature θ∗, and the underlying distribution µ∗ ∈ ∆Θ∗

is the same across groups. Let D : ∆Θ̃ × ∆Θ̃ → R be a function that measures

differences of distributions “atomically”, i.e. given distributions µθ
1, µ

θ
2 ∈ ∆Θ̃, we

can write D(µθ
1, µ

θ
2) =

∑
t∈Θ̃ d(µθ

1(t), µ
θ
2(t)) for some function d : R × R → R,

replacing the sum with an integral if appropriate (e.g. if Θ̃ is not discrete).

Let ci =
∑

t∈Θ̃ µ∗ ((Rθ
i )

−1(t)
)
. Then θ is (D, ϵ)-distributionally DE if and

only if θ is (D, ϵ)-semantically DE, where D : 2Θ
∗ × 2Θ

∗ → R is defined as

D(S1, S2) = d
(

1
c1
µ∗(S1),

1
c2
µ∗(S2)

)
given arbitrary subsets S1, S2 ⊆ Θ∗.

Proof. To first gain some intuition, note that we have chosen D and D to accord

with the definitions of distributional and semantic DE above. When we say D

measures differences of distributions atomically, we mean that the way it com-

putes differences between two probability measures representing distributions is

by summing over a function d applied to the values of those measures when eval-

uated on single elements in Θ̃. For instance, if Θ̃ is finite, then the total variation

norm Dtv is atomic with d(a, b) = 1
2
|a − b|, since to compute Dtv is just to sum

the absolute differences of probability masses. However, the relative ℓ∞ metric

is not atomic, since it takes a maximum over events. If Θ̃ is continuous, then D

could be computed by integrating some function of probability densities over all

possible values in Θ̃.
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Suppose θ is (D, ϵ)-distributionally DE. Observe that

D(µθ
1, µ

θ
2) =

∑
t∈Θ̃

d
(
µθ
1(t), µ

θ
2(t)
)

=
∑
t∈Θ̃

d

(
1

c1
µ∗ ((Rθ

1)
−1(t)

)
,
1

c2
µ∗ ((Rθ

2)
−1(t)

))
=
∑
t∈Θ̃

D
(
(Rθ

1)
−1(t), (Rθ

2)
−1(t)

)
.

where we applied Proposition 2 in the second line and our definition of D in

the third line. Thus the condition D(µθ
1, µ

θ
2) > ϵ is equivalent to the condition∑

t∈Θ̃D
(
(Rθ

1)
−1(t), (Rθ

2)
−1(t)

)
> ϵ. These are, respectively, the definitions of

(D, ϵ)-distributional DE and (D, ϵ)-semantic DE. If Θ̃ is not discrete we can just

replace the sum with an integral.

This theorem puts into mathematical language what we just described: when

θ is a proxy for θ∗, we can link our two DE definitions by regarding differences in

the feature distributions µθ
i as a consequence of semantic differences as conveyed

through the Rθ
i . Figure 2.3 gives an illustration of this idea.

To summarize, we have just presented a mathematical treatment of DE. In-

stead of the concepts in the previous section, our formulation examine distribu-

tions of individual features. Distributional DE goes along with a description of the

world we see, whereby a feature means the same thing among all groups but the

data we have for the feature is unexpectedly distributed differently, or does not

exist, for different groups. Semantic DE is a more normative definition, where,

regardless of the distribution of a feature, it cannot be interpreted consistently

because how it is interpreted by different groups is different—we need context (in
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Figure 2.3: A illustration casting distributional DE as a consequence of semantic DE. Assume
here for sake of illustration that Θ∗ and Θ̃ are one-dimensional and continuous. The diagrams
represent histograms of values. We take the underlying feature in Θ∗ to be distributed equally,
following µ∗, among two groups X1 and X2. However, the ways in which these groups interpret
the proxy in Θ differ, which leads to different empirical distributions µθ

1 and µθ
2.

the form of Rθ
i ) to understand the feature thoroughly. We also showed that in

some cases we can frame distributional DE as a consequence of semantic DE.

It appears that semantic DE is a more versatile and general conception to

work with. However, there are two snags. First, a feature θ might not be a

proxy for anything—it could just represent the base truth, such as “height” or

“weight”, making the semantic setup unnecessary. Second, while we can diagnose

distributional DE fromX in practice—indeed, we just need to look at the empirical

distributions of θ across groups—it is harder to empirically reckon with semantic

DE by definition, because the reason we use proxy features is likely because the

underlying feature θ∗ is impossible to measure itself. While we can talk about Rθ
i

in theory, finding it in practice might be intractable because of the broadness of the

constraints linking µ∗, µθ
i , and Rθ

i above; namely, Rθ
i is underspecified. Because of

this epistemic limitation, it may be more helpful to think of semantic DE as a more
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theoretical tool, while thinking of distributional DE as a diagnostic measurable

tool to assess our expectations that a feature ought to be distributed similarly

across groups. As we have said in the Introduction, since these conditions are

properties of data itself, they can be considered before factoring in the algorithm.

If data is differentially expressive, than the algorithm will likely inherit the bias

and misunderstanding that DE entails.

2.3 Differential Expressiveness in the Wild

DE is far from just a formal proposition; it provides us with a new perspective for

thinking about several instances of data bias in the real world. Here we consider

case studies and hypothetical examples of bias in which our notion of DE serves

as an insightful lens. We group our discussions into broad thematic categories

to illustrate the idea that DE as a phenomenon of data bias is quite widespread,

underscoring a need to think critically about the origin and significance of the

data we gather for any algorithm.

Hiring. We start out by building on an example in the awareness paper and

framing it as an instance of semantic DE. Consider a world with two groupsX1 and

X2 of students belonging to different cultures. Suppose X1 is a minority group,

and that in their culture the most talented students are steered toward STEM

subjects at a higher rate than the overall population in X1. Conversely, suppose

that inX2 the most talented students are steered by cultural norms toward finance

and economic at a higher rate than the overall population X2. The overall level of

engagement with STEM courses among both groups is equal. Consider the task
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of a consulting firm wishing to hire prospective graduates. Wishing to attract

the top talent, they notice that among the overall population X, the students

showing the most promise study finance and economics since X2 is the majority

group. Thus, they choose the feature θ to be “level of engagement with finance

and economics coursework” as a proxy for talent, used in screening candidates.

Evidently this is suboptimal; the firm should really be selecting for STEM

majors among group X1. (If culture is, however, a protected feature, we could

imagine that, adopting a true fairness through unawareness approach, the firm has

no way of differentiating between groups, locking in this suboptimality.) This sce-

nario provides a clear illustration of θ being semantically DE, because the meaning

of “person x studies economics” very clearly differs depending on the group x is

in. Moreover, in this scenario, semantic DE does not cause distributional DE, as

we specified above that the distribution of this feature in each group is equal.

We may describe this situation using the mathematical framework above. Let

θ∗ express talent, and suppose Θ∗ = Θ = {0, 1, . . . , 10}. Suppose we do not have

problems with empty values, so we only need to think about Θ and not Θ̃. Let

a higher value of θ∗ indicate a higher level of talent. Suppose the students are at

a strange institution where they must take exactly 10 courses in total, with the

only options being STEM and finance/economics courses, and let θ be the number

of finance and economics courses taken. Let µ∗ be the uniform distribution over

Θ∗, and define the semantic relations as follows: Rθ
1 = {(t∗, t) : 0 ≤ t∗ ≤ 10, t =

10− t∗} and Rθ
2 = {(t∗, t∗) : 0 ≤ t∗ ≤ 10}. The semantic relations here represent

simple bijections. Whereas in X2 θ is identical to θ∗ and therefore a perfect
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proxy (there is no difference in meaning), in X1 meaning is inverted: higher talent

corresponds to lower values of θ. It follows, however, that µθ
1 = µθ

2, both being the

uniform distribution over values of Θ. A test for semantic DE might notice that

preimages of θ under Rθ
1 and Rθ

2 differ significantly. As a sample calculation, since

Rθ
i are bijections here we can use the simpler definition of semantic DE using d.

Set d(t∗1, t∗2) = 1
|Θ∗| |t

∗
1 − t∗2|. Then, as a sample calculation,

∑
t∈Θ̃ : both (Rθ

i )
−1(t) exist

d
(
(Rθ

1)
−1(t), (Rθ

2)
−1(t)

)
=

10∑
t∗=0

1

11
|(10− t∗)− t∗|

=
1

11

10∑
t∗=0

|10− 2t∗|

which evaluates to 60
11
. We may say that relative to our choice of d, we benchmark

this as a strong signal of semantic DE given the construction of our example

(choosing ϵ, of course, depends on d).

What can the firm do in this case? Perhaps they can learn, through interviews

with students or campus research, about the presence of these two groups, and

reject the use of θ as a proxy given their goal. All proxies are flawed, but some

may be more useful than others. Alternatively, if the firm gained access to data

on group membership, they might be able to tweak their algorithm to interpret θ

conditional on group. This is an example of where differential treatment of groups

leads to better outcomes for both parties; although our conception of differential

treatment might be tied to harmful discriminatory practices, it can also be used

for good—it is what equity entails.

Admissions. One of our running examples throughout this thesis has been
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thinking about fairness and bias in the context of education—specifically from the

perspective of admissions. Consider the task of admitting students to a program,

college, etc., based on features we can gather about them. Here, we take X

to be a representation of students used to train an admissions algorithm, and

R = {0, 1} to signify a “admit”/“don’t admit” recommendation as the outcome.

Let X comprise disjoint groups X1 and X2, where X1 is a group of historically and

presently disadvantaged students and X2 is the remainder of students. There are

several ways we could think of X1 in real life. For instance, X1 could signify (i)

students in racial or ethnic minorities (a racial analysis); (ii) students from lower

socioeconomic strata (a class-based analysis); or (iii) students in public rather

than private schools, or in school districts receiving less public funding rather

than more (an economic resource-based analysis). Say the college’s admissions

officers wish to measure and train their algorithm upon is “effort”, or “current

academic grit”. However, since there is no way to directly measure this, they rely

on the proxy features of a student’s GPA and set of AP exam scores in X.

One key way of applying DE is that it describes the effect of structural inequal-

ities and injustices. We propose two interpretations linking inequality and data.

The first interpretation states that the impact of inequality is an all-encompassing,

systemic perturbation that modifies the innate qualities and dispositions—the

underlying features—of an individual. The second interpretation states even if

individuals maintained the same innate qualities over time, the fact that inequali-

ties put individuals in lived experiences under structurally different circumstances

manifests in differences in the distributions of features we can observe.
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To better articulate these two views, consider the task setup above. The first

view might tell us that we are doomed from the start. Group X1, as a consequence

of structural inequality, will innately contain differences of distribution of effort.

One feasible explanation for how this might arise is through differences in group

aptitudes. For instance, while students from lower economic classes might be born

with the same innate potential for academic grit, a cumulative lack of access to

rigorous education over their schooling can lead to the current distribution of grit

being lower for these students, which consequently decreases average GPA/AP

test-taking in the group. Thus, even if we could measure this underlying feature

perfectly and this feature has a consistent meaning across groups, it would still

exhibit distributional DE as a result of the world in which these students have

been raised and educated.xx

We might make a similar argument for effort: that structural disadvantages

have reduced the intrinsic willingness of individuals in X1 to pursue opportunities

and work hard, from disillusionment or group norms that prioritize sustenance

over ambition. Bringing in Part 1, this aligns with the Roemerian argument that

individuals of different “types” have different distributions of effort, and so we

must compare an individual relative to their type. However, this way of thinking

should be treated very carefully, since it is reminiscent of, and may perpetuate,

toxic rhetoric that certain groups are innately more “lazy” and less hardworking.xxi

xxOf course, it is invalid to, for example, set X1 to be individuals with lower grit and raise
the alarm of distributional DE. In that situation, we cannot make the assumption that the
distribution of grit is equal across groups; in fact, we specifically chose our groups to defy that
assumption.

xxiThis is exactly the message of some pervasive racial stereotypes. Christine Reyna provides
a discussion of these attitudes in education86.
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To avoid this hazardous thinking, we should stress that the reason differences

of effort arise is (per Roemer) because of soul-crushing circumstances and barriers

in the world today, not because individuals are born inherently predisposed to ex-

pend less effort than others—to establish distributional DE in effort (differential

effort) as a product of an individual’s environment rather than their character.

For consider one of the underlying features, “current academic grit”. While this is

not a proxy for anything, we could still conceive of its relationship with the feature

of “academic potential at birth”. Across groups, we expect potential at birth to

be equally distributed, but the effect of being raised in differential circumstances

would create systemic differences. In other words, the transformation from aca-

demic potential at birth to current academic grit is different among groups, and

in the same way semantic differences cause distributional DE, compounded differ-

ences in average life experiences cause distributional DE. So we could in fact still

adopt a similar theoretical way of reasoning as we did above with Rθ
i , except now

Rθ
i do not convey the effect of choosing a proxy but rather the withering impact

of inequality over time.

Adopting the second view, assume contra Roemer that baseline effort and

academic grit are still equally distributed across X1 and X2. Then the reason

we might observe differences in GPA and AP exam scores is because their use as

proxies distorts and misrepresents effort and grit, so that taking their values as

reflections of effort and grit is semantically unfounded.

The discussion in the introduction of this thesis gives us one explanation why

this might be the case. A wealthier and poorer student with equal academic
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capacities might each enroll in the same set of AP classes and receive the same

marks, but when it comes to taking the exam itself, which is what our feature

measures, there may be a split in behavior where the poorer student does not

enroll in tests. An obvious reason why is the financial barrier of tests, or the

availability of tests themselves. Some rural or underfunded school districts may

simply not offer AP tests altogether, leading to empty values for the feature of

AP exam scores. This case illustrates existential DE.

This is, however, not the only reason (especially considering that some schools

might offer financial subsidies). Outside of school, the wealthier student could

have access to a swath of test prep materials and tutors helping to boost their

confidence for test-taking. Moreover, their peers and community might view AP

test-taking as the norm, so signing up for an exam is expected, not exceptional.

On the other hand, if the poorer student lacks access to outside resources or knows

less about test-taking details (e.g. signup deadlines), they would likely take less

exams, even if they had equal opportunity to register. Finally, Calsamiglia’s work

provides one more way to look at this issue; while students have equal level of

effort proper, students with less resources, optimizing for their own utility, will

end up diverting less of that talent toward academic pursuits. Then the value of “5

AP exams taken”, while exceptional for a poorer student, might be below average

for a wealthier student, even if they have the same level of academic potential—a

clear form of semantic DE.

There is evidence to back this reasoning up. It is a documented fact that

disparities in levels of AP test-taking across the US exist across students of differ-
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ent races, even when controlling for a school’s level of access to AP programs19.

Additionally, the availability of AP courses differs among urban and rural areas,

and despite the existence of subsidy programs, the financial cost of registration

can act as a deterrent to taking the exam for low-income students, even if they

have completed the corresponding course46,58.

The psychologist Richard Weissbourd has studied these issues with admissions

work in education.xxii Referencing past collaboration with the Common App, he

notes that some admissions officers already assess GPA and AP exam records

differently based on a student’s background, and make attempts to contextual-

ize an individual’s circumstances beyond the canonical set of application criteria.

For instance, he proposes, instead of looking at an individual’s community service

record, to also take into account part-time work responsibilities. Voluntourism, for

instance, is only a viable option for those who can afford travel, and it is arguably

no better of a reflection of one’s altruism as is caretaking for a family member.

So it is an arbitrary decision to only consider the first category of activity in ad-

missions and not the second; the feature of “number of volunteer hours” can be

semantically DE based on socioeconomic class if it is used as a proxy for “commu-

nity engagement”. Overall levels of community engagement might be equal for all,

but the proxy is distorted because the way in which community engagement might

manifest for poorer students is in working jobs or supporting family rather than

volunteering. Moreover, rural students often have a less diverse set of accessible

extracurriculars to choose from, which may adversely affect the distinctiveness
xxiiRemarks here are taken from an interview done with Dr. Weissbourd in January 2024.
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and attractiveness of their applications, as an example of distributional DE for

the feature “engagement in extracurriculars”.xxiii Finally, he suggests that given

that wealthier students have more access to resources to help their essay-writing

process and a lower counselor to student ratio (making it easier to get nuanced

recommendation letters)—an example of distributional DE for the feature “level

of application assistance”—admissions officers may want to consider other forms

of evaluation other than an essays and recommendations, e.g. through videos.

There are also intersectional concerns, such as the fact that poorer students in

rural areas face even more barriers than just rural students, that our model with

two groups does not quite capture.

Education and Assessments. Consider a situation where school adminis-

trators are trying to select for students to place in an accelerated program in grade

school. Instead of academic achievement, the quality of interest here might rather

be academic potential. Suppose a school decides that quantitative skills form an

important part of academic potential, and measure this in part by considering

a student’s self-reported interest in STEM subjects and their prior coursework

therein. This feature of a student’s interest might also express DE; as there may

be students who possess sharp quantitative skills who have simply prioritized other

areas of study. For this group of students, a low level of interest in STEM does

not indicate a lack of quantitative strength, as the school might believe. Conse-

quently, this feature faces an issue where the extent to which it is semantically

correlated with quantitative skills differs between different kinds of students. In
xxiiiThis has been empirically studied in Ontario schools, as reported by People for Education7.
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the real world, some school districts indeed screen for “gifted child” programs in

elementary school using a private suite of assessments27.

Broadly, let X be students at a school and say our group of interest is the sub-

set of neurodivergent individuals. These individuals might struggle with standard

test environments (e.g. timed and written) causing artificially negative impacts

in performance. In this case, we might assume our feature of “test performance”

stands as a proxy for “academic talent”. In reality, this feature can also be viewed

as a proxy for “comfort with standard test-taking environments”. This latter

underlying feature exhibits distributional DE. The cause of this DE is not histor-

ical injustice, but bad educational policy, wherein administrators make a faulty

assumption that neurodivergent individuals thrive just as well in standard test-

taking scenarios as other students.

As Weissbourd notes, academic assessments, like most facets of the education

system, are designed with the typical student in mind, often blindsiding students

with disabilities or different neurological profiles and learning styles. International

students often lack more than just language proficiency, but the cultural currency

to properly engage with peers which can impact, for instance, their performance

in group projects. Individuals have different ways of understanding language,

such that among two kindergartners with an equal level of “English language

mastery”, one may do better on a phonics test and the other better on a liter-

acy task. Past studies have also pointed out differential problems with the SAT,

possibly the most important test for high schoolers, by observing that certain

questions function differently for black and white students owing to hypothesized
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cultural differences36,91. Essentially, Weissbourd argues, every time an assessment

is given to students the administrator necessarily deems the assessment a trustwor-

thy proxy for a background attribute of students that they are trying to measure.

But any assessment will necessarily be “coarse” by nature of trying to boil an

individual’s skills and abilities down to a number, and will intrinsically elevate

certain capacities over others. A chief lack of understanding of students’ specific

and complex strengths and weaknesses leads to schools artificially hampering stu-

dents’ performance. Ultimately, Weissbourd proposes, it is an understanding of

individual potential, rather than standard measures of achievement, that good

teachers should prioritize, and that means we ought to come up with new ways of

assessment away from standardization—in our words, new, improved, and more

transparent proxy features.xxiv Because individuals learn in a multitude of ways,

bias (DE) is inevitable; the best we can do is to recognize and minimize it.

Risk Prediction. We consider three very different kinds of risk scenarios.

In all three, however, we can think of an algorithm whose outputs are risk or

propensity scores, where higher values mean higher risk.

Our first example considers COMPAS as mentioned in the Introduction and

Part 1. We think of X as the training data for COMPAS, and the two groups here

as black and white defendants. Both of the impossibility results from Kleinberg

et al. and Chouldechova express trade-offs and competing relationships between

different fairness conditions as arising from an issue in the data—specifically, the
xxivFor instance, he espouses the following criterion for predicting student success: “look at the
students to whom others naturally go to for help”. This is an excellent heuristic on paper, but it
is hard to think about encoding this into a measurable observation is another problem entirely.
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base recidivism rates are different between the groups. This generates a tradeoff

between calibration and balance (Kleinberg et al.), and between FPR, PPV, and

FNR. From our perspective of DE, these impossibility results both express the

message that the consistency of fairness conditions is predicated on an absence of

distributional DE; that is, the expectation that base rates of recidivism should be

the same between the two groups. To make this more precise, imagine that there is

a binary feature θ indicating whether or not the individual reoffended. We would

assume that the distribution of these features (proportion of ones) among X1 and

X2 should be the same, but it is not, since black defendants were on average

more likely to reoffend21,60. There is no immediate obvious choice of a feature

for which we can view the indicator of reoffending as a proxy. The issue is that

because of a complex web of factors, conceivably including the lasting impact of

discriminatory and biased societal institutions as well as the constitutive impact,

per Kohler-Hausmann, of what it means to be a black offender vis-à-vis being a

white offender (where black individuals, once released, have comparatively less

robust safety nets, are more alienated, or disproportionately policed, etc.), the

distribution of reoffending is systemically higher for black individuals61. Fixing

this differentially expressive reality falls in line with the long and laborious task

of achieving racial justice.

Could Northpointe do better? As Part 1 explained, θ is not actually part of

the algorithm’s input data X, since it is what the algorithm is actually trying to

predict. Knowing θ would be akin to having an oracle that could see the future,

trivializing the problem. Consequently, our treatment of DE in this example does
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not have a direct link to the algorithm, as the differentially expressive feature is

“outside” the data. We might want think of ways in which the algorithm could

treat defendants as if they were in a better world where racial discrepancies did not

exist. But this is not Northpointe’s objective; their goal, as with most decision-

making efforts, is to best predict what would happen in the real world, rather than

an ideal world, to forecast what is actually likely to happen26. Thus, diagnosing

DE is separate from making a normative evaluation for how undesirable DE is for

the algorithm. In some cases, we just want to understand and follow the data,

even if the data is biased.xxv If DE tells us that the state of the world itself is

unjust, that gives us a vision to do better, but that does not necessarily morally

oblige us to scrap, or redesign, the algorithm.

Our second example examines a troubling situation presented by the political

scientist and writer Virginia Eubanks as told in her book Automating Inequality,

where she profiles a risk assessment tool, the AFST, used in Allegheny County,

Pennsylvania. This tool is used as a screening tool for maltreatment reports by

outputting a risk level for child abuse. Suppose X1 and X2 represent lower-class

and middle/upper-class households in the county respectively. Eubanks identifies

a critical flaw in the training data: there is far more data available for X1 than for

X2. Some of this is inevitable: some social programs from which data is collected

are only available to lower-income households, so even if wealthier families wanted
xxvConsider also, in the case of college admissions, the goal of measuring the underlying at-

tribute “aptitude at handling college-level examinations”. A student’s AP exam, while distribu-
tionally DE, would not be semantically DE with respect to this underlying feature—AP exams
are designed to measure just that. So although inequalities in AP access still exist, this fea-
ture would be the best feature that an admissions officer wishing to measure a student’s college
preparedness could hope to get.
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to use those resources, they would not be able to access them. On the other hand,

middle- and upper-class families using private insurance and living in secluded

suburbs (where abuse can be easily hidden) and give less data known by the

government: “the professional middle class would not stand for such intrusive data

gathering.” Compounding this fact is the fact that black and biracial families were

reported to hotlines at disproportionately high rates (likely due to discriminatory

attitudes or less privacy in their communities). As Eubanks observes, ”when

automated decision-making tools are not built to explicitly dismantle structural

inequities, their speed and scale intensify them”32.

This is another case of distributional DE, where data provenance is skewed to

“oversample the poor”, and as a consequence allows the algorithm to treat lower-

income families with more scrutiny. There is also semantic DE: if a household has

been reported by two hotline calls, this is likely much more troubling for a wealthy,

secluded family than for a poorer, less secluded one. Because more cases of child

abuse go unreported in wealthier households, there is a positive feedback loop: the

algorithm is “harsher” on lower-income families by conflating poorer households

with households more prone to abuse, leading to more police investigations on

those families, leading to even more data being gathered for the poor. At the

same time, data pertaining to the interaction of a household with public programs

becomes contorted with the family being low-income, for there is an existential

DE issue: sufficient data simply doesn’t exist for wealthier demographics, and the

model does not know how to treat this lack of information. In this case study,

confronting DE goes hand in hand with confronting a dilemma of data collection.
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In addition to thinking of the fairness of this algorithm’s behavior, we may think

about whether or not it is principally fair or practically useful to collect this data

from low-income households when the wealthy do not, and would not want to,

offer comparable data.

For our last example, briefly consider the situation of a bank assessing the

credit risk of an applicant. Like with COMPAS, there is a relationship between

distributional DE and the problematic origins of data, if we consider historical

discriminatory practices performed by human lenders, of which various reviews ex-

ist51,69. The challenge here is distinguishing legitimate individual circumstances

from blatant discriminatory outcomes. It is sensible here to think that, unlike

what historical data seems to indicate, we ought to consider applicants for loans,

credit cards, and mortgages without negative or positive racial connotations, sit-

uating us into an “ideal” scenario. However, learning how to adjust training data

to achieve this by correcting for discrimination is not a straightforward task, and

bias might still unconsciously propagate through the algorithm, as some recent

studies have discovered10.

Medicine. The history of medical treatment is not exactly an equitable or

equal one, either. However, it seems that we might have better grounds to hope for

fairer and less problematic data in this setting, since we only evaluate individuals

based on biological attributes, free from the destructive effects of discrimination

and human bias, for the purpose of accurately diagnosing some health conditions.

The picture in reality is less rosy. Current medical practices, like almost all

other fields, carry over a legacy of prejudice and discrimination. As one example,
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existential DE is an issue where, much like we have discussed above, there is far

less health data available for minorities, which impacts the accuracy of diagnoses.

Studies, for example, have shown that a lack of clinical studies involving lack

patients have led to systemically higher rates of error when testing for health

conditions82,106,70. Another example is presented by Obermeyer et al., who find

that a commercial algorithm used to assess health risk used a truly dubious proxy

feature: levels of healthcare spending as a proxy for need. This interpretation lent

itself to semantic DE, as it completely ignored the fact that healthcare spending

depends not only on need but also ability to pay and practitioners’ decisions

on where to allocate funds. Spending a few thousand dollars on a procedure is

probably reflective of a much higher level of need if the patient is low-income rather

than high-income. Additionally, spending on black patients was historically low,

such that the algorithm falsely concluded that black patients were healthier than

equally sick white patients and reduced the number of black patients flagged to

receive extra care by over half82.

A more interesting situation to consider is one in which there is, to turn the

tables, an incorrect assumption of the presence of semantic DE. What happens

when practitioners think that the value of a feature should be interpreted differ-

ently based on group membership, e.g. a patient’s race, when in reality the feature

does not have differential meaning? Vyas et al. categorize instances of these prob-

lems in medicine, in the context of algorithms producing risk scores for certain

medical conditions. Some of these scores are then applied to “thresholding” tests,

in which individuals test positive if some feature of theirs falls above a calculated
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threshold.xxvi In fact, these issues have manifested in medical settings, where such

thresholding tests are applied to patients’ medical data as risk screens in a num-

ber of different areas such as cardiology, organ transplantation, and obstetrics. In

many of these tests, black patients’ scores are given offsets before being compared

to set thresholds, allegedly to account for racial and genetic differences—i.e. a

hypothesized semantic difference between races of scores101.

There has unsurprisingly been criticism on the validity of these “point correc-

tion” adjustments. A common justification for these offsets is some claim about

biological processes differing between races, such as black patients having more

muscle mass. While some since-discarded measures had no empirical justification

for this belief and relied on invalid data and methodology (e.g. eugenics), Vyas

et al. find that other justifications at the time were backed up by reasonable em-

pirical logic. However, finding a correlation between race and clinical outcomes

is not sufficient grounds to use race as a predictor (there may be a confounding

variable), and later studies have found that there is more genetic variation within

race than across race, decreasing the supposed utility of using race as a feature101.

Additionally, the optics of artificially applying corrective adjustments is a dubious

one, and is not unlike an affirmative action policy in that it might make patients

feel treated in an overly reductive and crude way based on their race.
xxviHere is another methodological issue that thresholding tests can have through the lens of
distributional DE: say the thresholding test is based on a feature for which the distributions of
its values are different between different groups (e.g. there is group heteroskedasticity, or one
group has their features distributed roughly uniformly while another has features distributed
in a bell curve). Then the thresholding test might not work as expected for the groups; some
groups may test positive at disproportionate and inappropriate rates. This would violate, for
instance, the fairness definition of calibration. Because each group’s distribution of the feature
differs, it is inappropriate to apply one threshold across the board.
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Not unlike our discussion of education, one path of improvement might just

be to search for alternative features to use in place of race—better proxies for

the biological “truth” of a patient. There is a remarkable example of this being

done in practice, as reported in JAMA. A previous method to estimate the risk

of kidney failure (being a set of estimating equations rather than an algorithm

proper, but still corresponding with our framework) had incorporated race as a

predictor. By removing race in favor of a new feature—the levels of cystatin C, a

protein—the performance of the method remained roughly the same, and better

for certain patients15,43. While just one example, this gives some proof that there

are ways to address DE, or other bias problems, by performing a critical evaluation

and modification of the features in X.

In the above, we have addressed different scenarios where our characterizations

of DE apply. For a feature θ, we can get distributional DE without semantic DE

if θ is not viewed as a proxy for anything but we still have unexpected differ-

ences in distribution across groups, such as with differential effort in education

and admissions; we can think of situations where we have semantic DE but not

distributional DE, such as in our example about two cultures treating the study of

STEM versus finance and economics differently; and the feature could be affected

by both, such as in the case of features used in AFST. Sometimes we may act as

realists, optimizing for accuracy even if we acknowledge that our algorithms learn

and perpetuate a biased world, and we simply accept DE. However, it usually

ought to be productive to think more rigorously about the proxies we choose and

how we can compare a real and “ideal” world. This is the focus of the next section.
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2.4 An Extended Framework of Data Bias

In this section we review and build upon Friedler et al.’s (im)possibility paper.

They provide a framework for thinking about the sources of bias by describing

an observation process that, in terms of our vocabulary, produces proxy measure-

ments from underlying measurements, and discuss how notions of individual and

group fairness factor into this process. The purpose of this section is to present

their contributions, making use of the mathematical setup that was given at the

start of this part, while simultaneously extending their framework to accommo-

date our idea of differential expressiveness.

We have already talked about two main ideas in this part and how they interact

with DE. First, we can conceive of a terrible transformation from an ideal world

we hypothetically could, and should morally aim to, live in, without the effects

of historical discrimination, economic inequality, prejudice, etc., to the flawed

real world. Second, we often find ourselves providing to the algorithm proxy

features for underlying features that are themselves not measurable. Our extended

characterization of data bias gives us a structured way to categorize these ideas.

We will present our extended framework directly, and note how it adapts from

the (im)possibility paper37.

Recall that we defined V as a universe of representations of individuals op-

erated on by an algorithm, from which X is a finite set. To mathematically

characterize X, we assumed it had a metric and probability measure. The key

innovation here is to think of V and X as one of many representation spaces which

90



are related by transformations. For consistency with our previous development of

differential expressiveness, we will treat all the spaces here as finite to preserve the

setup. That is, the set of elements in each space is finite, each point corresponds

to how an individual is represented in the context of that space, and groups are de-

fined from a partition of the entire space into disjoint sets. However, Friedler et al.

present their definitions more generally to cover the case where each space could

be infinite, provided that the groups still form a partition of the space into disjoint

sets. This is because the definitions given at the start of this part like probability

measures, Wasserstein and Gromov-Wasserstein distances, and the group space

have analogues in continuous settings. (In fact, these generalized definitions were

mentioned in footnotes in the first section of this part.) Thus, while our presen-

tation will only concern finite spaces, it should be understood that these concepts

generalize to arbitrary metric spaces, should we wish to be more abstract.

A representation space, first and foremost, is just a generalization of how we

viewed V and X, i.e. a metric probability space of representations of individuals.

Definition 19. A representation space is a finite metric probability space (S, dS, µS),

where S is a set of representations of individuals. Each element s ∈ S that is a

representation of an individual takes the form of a vector of features. If µS is not

specified, we take it to represent the uniform distribution over elements of S.

We say “representation space” to emphasize the fact that each space uses

features to represent individuals. For shorthand, we usually omit writing dS and

µS. Since our spaces are finite, we continue to implicitly define the set of events as

2M (to formally define µ). Groups are partitions of the spaces. The act of defining
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a representation state already marks a large conceptual leap from thinking of an

individual as a fully-fledged human being to thinking of them as a vector.

We begin by formally stating the two main ideas above. The first idea is that,

as we just stated, there is a comprehensive difference between an “ideal” and

“real” world. If we compared a representation space for the “ideal” world with

a representation space containing the exact same features for the “real” world,

those spaces would most likely be different because the values of the features for

each individual would differ.

Definition 20. Let the ideal world denote an imagined state of the world where

any systemic disparity does not and has never existed. These disparities include

discriminatory institutions, individual biases, and unjust differential access to

resources and opportunities. Denote the universe of values for any possible feature

of any individual in the ideal world as D∗. Similarly, denote the universe of values

for any possible feature of any individual in the real world as D.

We write D∗ as conveying the universe of data for individuals in an ideal

world, as opposed to D. This chasm between what an individual’s feature values

would be in an ideal world and what they are in reality is very loosely motivated

by Dwork et al.’s idea of a “better world”, where they analyze modifications to

existing predictors trained on real-world data so that the modified predictors

perform as if they were trained a transformation of the world that improves it

(e.g. achieves balance for the positive class)31. While Dwork et al. constrain the

form of the possible transformations under consideration to rigorously analyze

their modifications, we adopt a more conjectural definition. The main question is
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where we set a boundary between an unacceptable and acceptable disparity; what

kinds of inequality do we still tolerate? For instance, we should do away with

sexism in D∗, but we should not deny our biology by desiring that all individuals

have equal distributions of physical characteristics. For our attempt to draw

the line, we propose that we should eliminate whatever a political philosopher

would feasibly deem socially unjust.xxvii So in D∗ segregation, redlining, and

gerrymandering do not exist, but people could still be neurodivergent or disabled.

The second idea is that, as already introduced when defining semantic DE,

there is a difference between an underlying feature and a proxy feature chosen

to estimate it. Recall that we expressed the relationship between an underlying

feature θ∗ and a proxy θ in terms of the semantic relations for each group, Rθ
i . The

overall mechanism obtaining values of θ from θ∗ is then determined by the semantic

relations (as given in Proposition 2), which we described as an “observation process

that translates and crystallizes values of θ∗”. Here, we will consider this process

applied to an entire vector at once, giving a transformation from a representation

space of underlying features to a representation space of proxy (observed) features.

We can now define our representation spaces, of which there are four in total,

along with the transformations of metric probability spaces between them.

Definition 21. Fix a task with outcomes in the result space R for which we aim

to design an algorithm f . The underlying space, U , is the representation space

in the real world D where representation vectors contain underlying features, the
xxviiSince each philosopher has a different conception of what exactly is unjust, this definition
is still a bit ambiguous. Given Part 1, we think it is most apt to go with a Dworkinian view: an
ideal world is one where there are no large-scale factors disadvantaging individuals which exist
beyond their control and cannot be attributed to differences in innate endowments.
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“desired” qualities and attributes of the individual that the task truly wants to

consider. The proxy space, X, is the representation space in the real world where

representation vectors contain the corresponding proxy features, i.e. the features

we actually observe. Let U∗ and X∗, the ideal underlying space and ideal proxy

space, denote the analogs of U and X under the ideal world, D∗.

A transformation is a map between representation spaces taking an individual

(and group)’s representations in one space to their representation in the other. Let

the proxy transformation or observation transformation fp be the map U → X

representing the process of observing values of proxy features from the underlying

features, and the ideal proxy transformation f ∗
p be its analogue U∗ → X∗. Let the

reality transformation ft be the map U∗ → U representing the process of going

from the ideal to the real world among the underlying features.

We will also assume R has a metric and measure, such that it can be viewed as

a representation space (where the representation is the algorithm’s output). See

Figure 2.4 for a visualization of these spaces. U∗ and U have the same features

whose values might differ, and similarly for X∗ and X. In the case that a feature

is not a proxy for anything, we can view it as a trivial proxy for itself and present

in both U and X (and their ideal counterparts).

We have defined our notation to make this setup compatible with our earlier

definition of an algorithm as a map X → R, since X still represents the actual

data given to the algorithm. However, we can now conceive as f as the last stage

in a larger algorithmic pipeline given fr and fp.xxviii All the fairness definitions in
xxviiiOne aspect of the pipeline we have not considered here is data sampling, i.e. the process of
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Figure 2.4: The different representation spaces we consider for a task. The pairs (U∗, U) and
(X∗, X) share the same set of features for their representations of individuals. U∗ and X∗ have
values of features that would exist in the ideal world, whereas U and X have values of features
that exist in the real world. f denotes the algorithm; all other functions are transformations.

Part 1 are stipulations on f , since they do not consider the background processes

responsible for generating data. There is now more to explore.

As a remark on notation differences, Friedler et al. defines U , X, and R as the

“construct space”, “observed space”, and “decision space” respectively. However,

they do not consider U∗ or X∗. The aim of some tasks might be to estimate an

underlying feature in U or U∗ given X. To adopt an example we have already

covered, in the context of admissions we can take U∗ and U to represent academic

getting our finite set of individuals X from a universe of individuals V . Improper sampling could
serve as another possible source of bias if some groups are misrepresented by their members in
X. We could think of this as occurring between fp and f , if U∗ and U are interpreted as infinite
universes of representations. There is a large literature in statistics and the social sciences
tackling the issue of sampling bias, so it is not our focus107.
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grit in the ideal and real world, X to be GPA or AP exam scores, and R as the

binary variable denoting an admission recommendation. We will now summarize

the main takeaways of the (im)possibility paper in this setup.

Since Friedler et al. do not consider an ideal world, their chief concern is

characterizing fp and the way in which it can express bias. They immediately

consider three ways in which fp can be problematic: (i) it could add noise to

features, (ii) it could express proxy features in terms of functions of multiple

underlying features, and (iii) it may add meaningless proxy features that are

independent from underlying features. We can compare this to how we interpreted

the observation process in terms of semantic relations Rθ
i . Suppose θ is a proxy for

θ∗. We may express (i) by saying that the semantic image for a value of θ∗ is a set

of multiple values corresponding to adding random noise that produces variation

in observed values of θ. However, for (ii) and (iii), our semantic relations only

consider isolated pairs of underlying and proxy features, and not possible many-

to-many relationships, such as if θ were a function of several θ∗. So although our

framework is enough to categorize semantic DE, it may fail to capture the full

complexity of the overall transformation fp.xxix

The main thrust of the (im)possibility paper is to describe core assumptions

of fairness definitions in terms of relationships between U and X. Instead of

considering an algorithm as just f acting on X, they advocate to consider it as

acting on U by analyzing the map f ◦fp : U → R. This conveys how an algorithm
xxixWe mentioned this limitation briefly when introducing semantic DE. If there are n∗ under-
lying features and n proxy features, we might extend our analysis to consider all n∗ ·n semantic
relations, one for each pair of underlying feature and proxy feature.
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treats the “true” character of individuals. They also articulate two main axioms,

for which we provide our own interpretations and observe new results.

Remark 3. U and X fulfill the “what you see is what you get” axiom (WYSI-

WYG) if the additive distortion of fp is small (less than some ϵ). WYSIWYG is

assumed to ensure that individual fairness constraints on f translate into compa-

rable individual fairness constraints on the overall map f ◦ fp.

The WYSIWYG axiom naturally goes along with individual fairness discus-

sions since the technical condition it relies on, additive distortion, is defined in

terms of how fp acts on individuals. The remark essentially explains that since

individual fairness definitions bound the extent to which f distorts distances from

X to R, assuming WYSIWYG also guarantees that the overall distortion from U

to R as given by f ◦ fp will be small. In particular, say that fp satisfies (ϵ, δ)-

individual fairness. Choose some ϵ′ < ϵ. Then if we assume the WYSIWYG axiom

with parameter ϵ′, f ◦ fp satisfies (ϵ− ϵ′, δ)-individual fairness as a map U → R.

To prove this, notice that since the algorithm bounds the distortion of fp, any

two individual representations in U which differ by at most ϵ − ϵ′ are mapped

to points in X which differ by at most ϵ; the fact that the outcomes differ by at

most δ then follows by the definition of individual fairness. Following the same

strategy of tracking distortions of distances as we move from U to X to R (we

omit full proofs), if we assume WYSIWYG with parameter ϵ′ and constrain f to

have distortion at most ϵ, then the overall map f ◦ fp will have distortion at most

ϵ + ϵ′. If we instead constrain f to be K-Lipschitz as defined in the Appendix,

then f ◦ fp will satisfy (ϵ,K(ϵ+ ϵ′))-individual fairness.
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Remark 4. Consider a partition of individuals in our representation spaces into

groups. Let U1, . . . , Uk be the subsets of U corresponding to the groups. Then

U fulfills the “we’re all equal” axiom (WAE) if the Wasserstein distances on U

between pairs of groups in U are small, i.e. for all Ui, Uj, Wd(Ui, Uj) < ϵ.

Additionally, consider the group spaces U , X , and R defined based on U , X,

and R respectively. We say that fp admits ϵ-structural bias if the group skew

between the two spaces, σ(U ,X ), exceeds ϵ, and we similarly say that f admits

ϵ-direct discrimination if σ(X ,R) > ϵ. Conversely, if ρ(U ,R) < ϵ, we say the

overall map f ◦ fp is ϵ-nondiscriminatory.

Recall from our mathematical setup that given a partition into groups, Wasser-

stein distances on a representation space, as well as the group space, can be defined

using the space’s measure µ. WAE essentially assumes that all groups are “close”

to each other in U , having no innate differences in the values of their underlying

features, and the following results give a mathematical treatment of the notion of

groups being treated differentially by the observation process fp (structural bias)

and/or the algorithm that produces results f (direct discrimination) using group

skew. This allows us to think about group discrimination in a modular way, and

tells us that in order to guarantee overall nondiscrimination over groups (as mea-

sured by σ(U ,R)). Indeed, they present the following result: if we impose the

constraint on f that the distances between groups in R must be small (a kind

of group fairness constraint), i.e. Wd(Ri, Rj) < ϵ for all pairs of groups Ri, Rj in

R, then assuming the WAE axiom with parameter ϵ′, the overall map f ◦ fp is
max(ϵ,ϵ′)

δ
, where δ is the noise term added in the calculation of group skew. We
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defer the proof to the (im)possibility paper where it can be found37.

Now let us consider and compare our contributions to this framework. First,

since our formulation of differential expressiveness is in terms of groups, it does not

engage with the individual fairness results presented by Friedler et al.. However,

the WAE axiom is strikingly similar to our discussion of semantic DE, in which

we assumed that the distribution of an underlying feature, µ∗ should be the same

across groups (see Proposition 2). The difference is that the WAE axiom considers

groups at large as subsets of U , whereas our formulation of µ∗ is for an individual

underlying feature. If we apply our assumption of equal µ∗ across all underlying

features in the representation space U , then with high likelihood the pairwise

Wasserstein distances between groups in U should be small.xxx

The main new contribution of our framework comes with the inclusion of the

ideal world D∗, which allows us to think about an additional transformation fr

that, for us, happens even before fp. fr, for us, represents the process of moving

from the ideal to the real—what we imagine as a regrettable and soul-crushing

process by introducing inequality and injustice. This gives practitioners an addi-

tional option to consider when it comes to conceptualizing the overall mechanism

that their algorithm implements. Instead of thinking about an algorithm as a

map from data about proxy features to outcomes X → R, the (im)possibility

paper opens up the possibility to think about an algorithm as implementing a

larger mechanism from underlying, “true” attributes to outcomes f ◦ fp, which

opens up the possibility of considering how the process of observing coarse and
xxxTo numerically quantify this, however, we need to consider factors like different sizes of the

groups, which requires probabilistic analysis we do not perform here.
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blunt proxy features instead of underlying ones might introduce bias before the

algorithm even enters the picture. With our framework, the practitioners now

have a third option: considering their algorithm as the last step in a mechanism

f ◦ fp ◦ fr, if the starting point is to evaluate individuals based on the underlying

features they might have in an ideal world as signified by U∗.

Just as Friedman et al. applied the WYSIWYG axiom to fp, we can also

consider applying the axiom to fr. If we assume that WYSIWYG holds for fr,

then we can derive similar results to the above wherein making f obey individual

fairness constraints begets individual fairness guarantees for the entire pipeline

f ◦ fp ◦ fr. This would be excellent; this would mean that a mechanism is not

only individually fair with respect to underlying features in the real world, but

it would also be fair with respect to underlying features in the ideal world—in a

way, the algorithm would treat individuals like their best selves.

However, assuming WYSIWYG holds for fr is, as we have discussed earlier in

this thesis, likely a mistaken assumption. Because fr represents all the injustice

and evils of the real world, it likely causes significant distortion of distances,

making the guarantees we might have for f ◦ fp fail to carry over to f ◦ fp ◦ fr.

Furthermore, instead of assuming WAE holds in U , we assume it holds in U∗.

It is sensible to think that the introduction of discrimination that comes with

fr will cause it to exhibit high group skew, causing WAE to no longer hold in

U . This follows the argument we presented for distributional DE when analyzing

examples: sometimes the underlying feature itself is unequally distributed, against

our expectation, because of the legacy of disparity and how that might selectively
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affect cultural norms and character dispositions among groups. In other words,

fr is the vector in which distributional DE gets introduced in our world. As a

result, WAE might not hold in U , and we get neither individual nor group fairness

guarantees for the overall mechanism f ◦ fp ◦ fr.

How might practitioners address this? One approach is to simply dismiss U∗

as providing a theoretical vantage point, and interpreting fr a way of expressing

grievances for the state of this world but not an actual transformation to tackle.

As we have already said, in some cases the algorithm is meant to best predict

what happens in the real world rather than some imagined ideal which, although

more morally just, would give a worse-performing algorithm right now. In other

words, ignore fr and work with the reduced framework U → X → R with overall

mechanism f ◦ fp, as in the (im)possibility paper. This is a legitimate strategy;

after all, algorithms aim to meet a teleological goal. Nonetheless, this framing

might be helpful in some circumstances (e.g. when we want to assess an individ-

ual’s innate potential and behavior), whereupon we might take interest in the line

of work that was introduced with Dwork et al.’s “better worlds” paper and will

hopefully continue to develop.

There remains one unaddressed part of our extended framework: that of the

map f ∗
p : U∗ → X∗. As we defined it, this is analogous to the process of observing

proxies even under an ideal world. We include this to highlight the fact that even

under ideal circumstances, algorithm designers and data collection processes might

still face the issue of having to pick proxies. Even if there is equality of educational

opportunity, teachers will likely still need to hand out academic assessments, by
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virtue of them being a far more easy way to measure a student’s level of compe-

tence and academic ability than, say, individually working and investing time into

every student.xxxi Similarly, we will still be unable to measure an abstract un-

derlying feature such as “grit”, relying on proxies like GPA and AP exam scores.

Proxy features will still by nature remain coarse and rough approximations—and

this means that some of the case studies of semantic DE that we have discussed

above, such as neurodivergent individuals being disadvantaged in normal means

of assessing students, and exceptional students of different cultures being more

inclined to study in different fields, can still happen. While moving to D∗ will

solve systemic issues, it is not a panacea for DE entirely. The conclusion as rep-

resented by f ∗
p is that to detect and mitigate differential expressiveness entirely is

a deceivingly complex endeavor. In short, we associate distributional DE with fr,

indicative of the manifestation of systemic harms and unfairness in reality, and

associate semantic DE with fp and f ∗
p , indicative of the methodological hazards

that come with every choice of proxy, conscious or not, that we make.

2.5 Towards Remediating Differential Expressiveness

We finish our thesis by connecting DE to other characterizations of data bias that

have been proposed in the literature. Our characterization is most similar to three

kinds of harm that Suresh and Guttag describe in their framework: historical,

measurement and aggregation bias. In historical bias, the world as it was or
xxxiOf course, teachers ought to act this way and we would expect that they do in an ideal
world, but in situations where schools need some way of reporting a standardized and easily-
understandable measure of ability across hundreds if not thousands of students, grades and
marks may very well still be a necessity.
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as it is reflects intrinsically harmful outcomes, which aligns with our conception

of distributional bias (as conveyed through fr). In measurement bias, features

aimed at approximating unobserved constructs are measured differently among

groups, causing differences in measurement methods and accuracies or plainly

oversimplifying the construct. Semantic DE resembles this idea, whereupon even

with representative and equal sampling strategies, features do not properly convey

what they are meant to convey. Similarly, aggregation bias occurs when the same

model is used on underlying groups which ought to be treated differently; the

same variable means different things to different subgroups, making the overall

model biased toward a majority group and/or suboptimal for all groups98. This

accords nicely with our understanding of semantic DE, although they consider

this bias as arising during the deployment, rather than training, of the model.

Ntoutsi et al. categorize different ways in which bias can be understood,

mitigated, and accounted for. Our entire discussion of DE lives within one section

of their presentation: understanding the “socio-technical” causes of bias, which as

defined for them constitutes an investigation of the processes that generate data79.

DE describes at its core problems surrounding the origin of data, whether those

origins are historical or methodological. Finally, we mention that Mhasawade et

al. conceive of a similar separation between the “world as it should and could

be” and the “world as it is”, calling the process that takes us from the former to

the latter “retrospective injustice”, or “societal bias”82. This is yet another way

of presenting fr from our framework, and demonstrates to us that the framing

tool of thinking about how things ought to be as compared to how they are right
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now has been considered before. The entire set of circumstances where DE arises

is, in a sense, “pre-algorithm”, and thus only constitutes a small fraction of all

the different situations where algorithmic bias can arise. Understanding DE will

not completely characterize data bias, but we nonetheless hope that it gives an

insightful new perspective with which to view it.

To finish, we note that differential expressiveness is also fundamentally a very

applied problem, in that it is all about information gathered into datasets. Hence,

one practical way to be aware of bias in data is if datasets are rigorously analyzed

as part of the curation process, and appropriate information and warnings are

disseminated to those using data to train their models. There exists work, albeit

limited, on this front. A 2018 paper by Gebru et al. has pointed out a lack of

standardization in the process for documenting datasets, and proposes the idea of

datasheets for datasets, standardized templates for communicating matters of data

provenance, that is, providing documentation around how datasets were created

and including relevant metadata and methodological details. The hope is to use

these templates to increasing data transparency, stewardship, accountability, and

reproducibility38. Holland et al. propose a very similar framework that suggests

including information about dataset provenance, simple statistics, and pair plots

among others in the form of “dataset nutrition labels”. Happily, these forms of

rigorous documentation have seen adoption by the machine learning community,

and have accompanied some of the latest datasets, including new benchmark as-

sessments for large language models47,92. Fabris et al. put these frameworks to

use by generating documentation for over two hundred datasets intended to be
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used in machine learning fairness research33. They particularly note that a few

datasets are disproportionately used in the literature despite containing problem-

atic attributes (e.g. noisy data, coding mistakes, etc.), including the very dataset

used in ProPublica’s analysis of COMPAS. Ultimately, perhaps one of the best

ways to stay alert of and efficiently address differential expressiveness and data

bias at large is to be more thorough and thoughtful in thinking about the data

we take for granted before the training process even begins.

We have already included above some strategies to reckon with DE. Sometimes

we will just choose to live with DE, so to build algorithms more suited to perform

well in the real world. We may also strive to look for better proxies that supersede

more dubious ones. We might think about ways to reconstruct a better world by

modifying our existing algorithms, while being tactful not to accidentally imple-

ment questionable measures in the name of equity (as has happened in medicine).

Our definition of distributional DE has also been presented using statistical lan-

guage that straightforwardly lends itself to tests for differences of distributions.

In fact, auditing for distributional DE is equivalent to the problem of testing for

a difference between distributions, e.g. by using the Kolmogorov-Smirnov test. In

the Appendix we also frame existential DE in terms of a statistical test. The only

additional thing that is needed to qualify our applying a statistical test is a nor-

mative judgment that we expect the distributions of a feature not to differ across

groups. Statistical inference, of course, is a whole other realm in itself worthy of

further study, so our use of statistical testing is only a cursory suggestion. Beyond

these suggestions, a lively sector of algorithmic fairness focuses on strategies for
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pre-processing data, and several works have already shared their treatments of the

issue of representing individuals to an algorithm16,56,111. This thesis, however, has

concentrated on describing the issue of DE, rather than solving it and/or evalu-

ating if these such existing methods do (or do not) counteract DE. It may well be

the case, however, that some of these methods already contain the key to address-

ing differential expressiveness. Performing a review with current state-of-the-art

methods for modifying data is just one of many other natural next steps to take

given the material we have presented.
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3
Conclusion

Prima facie, we might say the task of thinking about fairness is an intuitive one.

In social settings it may often be natural to deem situations and actions fair or

unfair based on our instinct, and perhaps equipped with a few distributive justice

principles from philosophy class. One thematic objective of this thesis has been to

show that in the context of complex real-world scenarios involving algorithms, this
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intuition verily does not carry over. Part 1 of this thesis addressed fundamental

fairness definitions themselves when giving a “story” of the evolution of the field.

As we saw through impossibility results and critiques of the definitions, even

defining fairness itself is a difficult task, and the field has not adopted one canonical

definition of fairness to follow. Part 2 of this thesis investigated the area of data

bias. In exploring the phenomenon of differential expressiveness, it also seems

that the rudimentary goal of getting trustworthy and unbiased data in the first

place is a demanding one, due to the challenges we encounter when considering

the impact of historical and present disparity as well as the implicit coarseness

that comes with picking proxy features to represent underlying attributes.

This being said, it might seem that the tone of this thesis is a rather pessimistic

one casting efforts to achieve algorithmic fairness as hopelessly obstructed by

competing definitions and flawed data. To be very clear, this is not the intention.

The message here is not to cry wolf about how wicked the data around us is, but

rather draw attention to the deceiving complexity of fairness and justice while

suggesting new perspective to think about existing issues. We think DE is, at the

minimum, provides an interesting mathematical spin on an existing problem, and,

more optimistically, shines a new light on the difficulty of prescribing a meaning to

a feature by connecting it with other problems in data bias. Distributional DE can

describes an issue with injustices that exist in the world today, whereby attaining

the same value of a feature requires disproportionate effort among different groups.

On the other hand, semantic DE arises as a consequence of the feature itself

signifying different things to individuals in different groups.
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To end this thesis, we address a few categories of shortcomings and omissions.

Firstly, while our broad description of an algorithm as implementing a task and

acting on vectors of features representing individuals plausibly seems quite gen-

eral, it is actually rather restrictive considering the vastness of the field of machine

learning. Many application areas of machine learning models do not fit into this

structure of producing outcomes for individuals, but may still be viable settings

to discuss differential expressiveness, or extended characterizations thereof. For

instance, algorithmic bias has been well-studied in the setting of natural language

processing (e.g. word embedding models enshrining gender bias), especially given

the rise of large language models. We could try translating DE to be defined in

this situation as the phenomenon whereby the internal world model of a language

model disproportionately associates certain groups Xi with categories of words or

concepts Ci, when in reality we think that each Ci should equally represent all Xi,

or equivalently, each Xi should have a representation in Ci that reflects an ideal

world. For instance, a Ci could be the semantic category of a career, an element

of the set {medicine, politics, theoretical computer science, athlete, . . . },

while each Xi correspond to demographic groups which may currently be under-

represented among certain Ci (so we want the distribution of concepts to follow an

idealized distribution, not the real-life distribution), e.g. the partition of humans

into men, women, and non-binary individuals. As another example, existential

DE seems like a relevant concept when considering historical case studies of fa-

cial recognition models being far better at processing images with light skin tones

versus dark skin tones, due to a lack of diverse samples during training (so there
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is missing data for racial minorities in the training set).

While defining our setup, there are more limitations we have flagged. Simply

taking the groups Xi to be partition of X might not properly express the impact

of intersectionality whereby we want to evaluate fairness with respect to different

group partitions simultaneously (e.g. race as well as socioeconomic class); this is

a motivation for the definition of multicalibration we roughly described in Part

1. We could extend our presentation to cover the general case where X and the

different representation spaces are not necessarily finite. In our interpretation of

X, we could consider more general scenarios in which entities x do not represent

humans but rather, e.g., companies, nation-states, political parties etc., so long as

there is some meaningful notion of forming groups. This could also open up for

our consideration a wider range of scenarios in which the use of algorithms has

taken root, such as in biology and voting. The presentation of semantic relations,

aside from being somewhat notationally cumbersome, faced two opportunities

for generalization as we noted: changing semantic images and preimages to be

probability distributions over feature values rather than just sets of values, and

to also accommodate the fact that the relationship between underlying and proxy

features could be many-to-many. Our work, like most of algorithmic fairness, also

is quite local: we defined DE on the level of individual features, which might lead

us to miss sight of the bigger and constitutive picture on the scale of entire feature

vectors representing individuals.

As the impossibility results might suggest, algorithmic fairness is a field teem-

ing with definitions and relationships between them. However, the link between
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Parts 1 and 2 of this thesis is not especially strong aside from sharing core con-

cepts; we did not really consider how differential expressiveness works with the

different definitions of individual and group fairness in Part 1. (E.g. if feature θ

is semantically DE, what does that tell us about predictive parity, balance, cali-

bration, etc? Are there scenarios in which DE is not caught by fairness notions,

or conversely results we can show where DE will be “caught” by a notion?) Simi-

larly, there are likely more connections between the two characterizations we gave

of DE, and of our characterization of DE and other frameworks of bias that are

waiting to be discovered. Additionally, we have not focused on developing strate-

gies to detect DE and fix it through data, aside from the brief references at the

end of Part 2. Nor have we analyzed real datasets to examine more examples of

how DE appears “in the wild”. For the most part, our ideas currently remain just

that—ideas and proposals, not yet fully-fledged and empirically tested theories

proper. Understanding this, this thesis only presents a start.

While this thesis belongs in the field of algorithmic fairness, there was very

little to talk about algorithms proper. As mentioned, we have not talked about

broad swathes of the field, including the literature on how to achieve and guaran-

tee fairness in practice. There are even more related concepts that we have not

touched on. Aside from datasheets for datasets, other proposed ways of making it

easier to catch and fix algorithmic bias think about how we might change the way

humans interact with the data representing them and the algorithms that process

that data, c.f. the nascent fields of machine learning interpretability, explain-

able AI, and human in the loop approaches within the study of human-computer
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interaction. In the age of big data, other scholarship has studied the privacy

implications with assembling datasets of unprecedented scale, raising ethical con-

cerns about what kinds of underlying and proxy features we ought to use, c.f.

the philosopher Helen Nissenbaum77,30. To think about algorithmic fairness is to

enter a vast forum of discussion where striving to be utterly comprehensive is a

futile and unnecessary attitude.

The heart of this work revolves around a few core themes. There is the long

history of defining fairness as dealt with in political philosophy, law, economics,

and computer science. There is the idea of representing individuals through data

and features to an algorithm. There is the idea that every data curator and algo-

rithm designer implicitly makes a choice of a proxy feature when collecting data,

and that there is almost always some element of bias we should be aware of. There

is the idea of comparing an ideal, hypothesized world with the one we live in. And

there is the juxtaposition between equality and equality, similar to the tradeoffs

between different conceptions of fairness. Differential expressiveness naturally

leads us to adopt a more equitable view, insofar as the fact that meaning differs

across groups implores us to be aware, rather than blind, to group membership

(which may be sensitive) in hopes of producing better outcomes for everyone.

At the same time, we should not mistakenly lead us to think that data is the

root of all evil, and ridding datasets of bias will be a panacea. As Guttag writes,

the statement ”data is biased” is not false, but ”treats data as a static artifact

divorced from the process that produced it... long and complex grounded by

historical context and driven by human choices and norms”. Data is a living thing,
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and we have the power to change it inasmuch as it holds the power to affect us by

way of the algorithms that are trained on it. We hope our discussions, conceptual

and otherwise, mark progress towards a further rigorous way of thinking about

data and fairness, and also help us reflect on the very real challenges that still

exist in today’s world for which biased data is just a symptom. Humans are far

more than trends, biases, and numbers, and the challenge upon us is to ensure

that the increasingly potent algorithms we design understand that too.
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4
Appendix

4.1 Metrics on Probability Distributions

In the mathematical preliminaries of Part 2 we mentioned that D∞, defined in

“Fairness Through Awareness”, was a metric on ∆A28. While this metric has been

mentioned in the statistics literature it appears to be less discussed than Dtv and

a proof that it is a metric was not included in the paper. So it may be a helpful
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exercise to show that it is indeed a metric.

Proposition 3. The relative ℓ∞ metric D∞, as defined for elements in ∆A where

A is a finite set, is a metric.

Proof. Consider any P,Q,R ∈ ∆A. We want to show D∞ satisfies the three crite-

ria defining a metric. For criteria (i) note that for any event a ∈ Amax
(

P (a)
Q(a)

, Q(a)
P (a)

)
≥

1, with equality iff P (a) = Q(a). If P 6= Q, there must be some a ∈ A on which

they assign different probabilities, so D∞(P,Q) > 0. If P = Q, then ∀a ∈ A,

max
(

P (a)
Q(a)

, Q(a)
P (a)

)
= 1, so D∞(P,Q) = 0. Criteria (ii) follows by definition of D∞.

To show the triangle inequality (iii), let a∗ = argmaxa∈A log
(
max

{
P (a)
R(a)

, R(a)
P (a)

})
,

and WLOG suppose P (a∗)
R(a∗)

> R(a∗)
P (a∗)

. Then

D(P,R) = log

(
P (a∗)

R(a∗)

)
= log

(
P (a∗)

Q(a∗)
· Q(a∗)

R(a∗)

)
= log

(
P (a∗)

Q(a∗)

)
+ log

(
Q(a∗)

R(a∗)

)
≤ log

(
max

{
P (a∗)

Q(a∗)
,
Q(a∗)

P (a∗)

})
+ log

(
max

{
Q(a∗)

R(a∗)
,
R(a∗)

Q(a∗)

})
≤ max

a∈A
log

(
max

{
P (a)

Q(a)
,
Q(a)

P (a)

})
+max

a∈A
log

(
max

{
Q(a)

R(a)
,
R(a)

Q(a)

})
= D∞(P,Q) +D∞(Q,R).

as desired.

Dwork et al. also mention a relationship between Dtv and D∞, namely that

Dtv(P,Q) ≤ 1 − exp(−D∞(P,Q)) ≤ D∞(P,Q). Proofs for this inequality are

available online and for brevity will not be reproduced here48.
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These two metrics are just part of many metrics used to express distance

between statistical distributions. A good overview of such distances in general is

given by Gibbs and Su39. It is worth noting that some commonly-used ways of

conveying “distance” between distributions are not, in fact, metrics, such as the

KL divergence:

Definition 22. Let A be a finite set and P,Q ∈ ∆A be two probability distribu-

tions defined on A. The Kullback-Leibler (KL) divergence of P from Q is defined

as DKL(P‖Q) =
∑

a∈A P (a) log
(

P (a)
Q(a)

)
.

KL divergence is not a metric. As a simple counterexample, let A = {a1, a2},

with the elements assigned probabilities of (0.1, 0.9) and (0.5, 0.5) by P and

Q respectively. Then DKL(P‖Q) ≈ 0.029 but DKL(Q‖P ) ≈ 0.222, violating

symmetry. However, for example, the Jensen-Shannon divergence, which sym-

metrizes KL divergence, is a metric, defined between P and Q as 1
2
(DKL(P‖Q) +

DKL(Q‖P )).

The takeaway of this to our work is that if practical computational consider-

ations are not the focus, there is a wealth of metrics to draw from that formalize

the notion of distances between distributions. An interesting line of work could

examine the specific properties and benefits of using certain notions of distance

over others, e.g. if they satisfy nice mathematical or computational properties.

However, our analysis mainly considers the abstract, meaning we are overall not

concerned about particular choices of metrics.
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4.2 Definitions of Continuity

Consider a map between metric spaces. We can consider commonly-used defini-

tions of what it means for f to be continuous:

Definition 23. Let (M1, d1) and (M2, d2) be two metric spaces and f : M1 → M2

be a map between them. f is continuous if ∀a ∈ M1 and ∀δ > 0, ∃ϵ > 0 such that

for any b ∈ M1, d1(a, b) < ϵ =⇒ d2(f(a), f(b)) < δ. f is uniformly continuous if

∀δ > 0, ∃ϵ > 0 such that ∀a, b ∈ M1, d1(a, b) < ϵ =⇒ d2(f(a), f(b)) < δ.1

The idea is that when approaching a point a ∈ M1, f should approach arbi-

trarily close to f(a). Mathematical convention usually switches the places of ϵ and

δ above, but we present this for consistency with the definition of (ϵ, δ) continuity

(and so (ϵ, δ) individual fairness)108. Uniform continuity implies continuity as the

differences in definitions are a change in quantifier order: if f is uniformly con-

tinuous, then for any chosen δ, the according ϵ satisfies continuity at any a ∈ M1

(whereas continuity may require ϵ to be dependent on a).

Proposition 4. If f : M1 → M2 is K-Lipschitz continuous, then f is uniformly

continuous (and hence continuous).

Proof. Given arbitrary δ, set ϵ = δ
K
. Then given any point a ∈ A, for any b ∈ A

satisfying d1(a, b) < ϵ we have by Lipschitz continuity d2(f(a), f(b)) ≤ Kϵ = δ,

satisfying uniform continuity by definition.

What we have defined as (ϵ, δ)-continuity (with respect to d1 and d2) in Part

2 does not imply continuity or the Lipschitz condition. The idea is that if we
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look at small neighborhoods of width ϵ in M1, any two points mapped by f

within this neighborhood should diverge by less than δ; however, those points

do not necessarily get arbitrarily close. For instance, choose some ϵ, δ∗ > 0,

let M1 = M2 = R with the standard (absolute value) metric, and consider f

defined as f(a) = 0 if a ≤ 0 and δ∗

2
otherwise. f satisfies (ϵ, δ∗)-continuity since

no two values of f differ by more than δ∗

2
. However, f is not continuous: let

δ = δ∗

3
, then for any ϵ > 0, if we let a = 0 and b = ϵ

2
we have |a − b| < ϵ,

but |f(a) − f(b)| = δ∗

2
> δ. It follows that f cannot be uniformly continuous or

K-Lipschitz continuous. However, we do have a result in the opposite direction.

Proposition 5. If f : M1 → M2 is K-Lipschitz continuous, then for any ϵ > 0,

f is (ϵ,Kϵ)-continuous.

The result immediately follows from the definition of the Lipschitz property.

For if we are guaranteed that any a, b ∈ M1 such that d1(a, b) < ϵ satisfy

d2(f(a), f(b)) < Kϵ, we have immediately met the condition of (ϵ,Kϵ)-continuity.

In fact, uniform continuity also implies (ϵ, δ)-continuity, though the relationship

is more general. For consider any δ > 0. Uniform continuity will give us ϵ such

that for any two points a, b, d1(a, b) < ϵ =⇒ d2(f(a), f(b)) < δ, i.e. exactly

(ϵ, δ)-continuity. So we can write:

Proposition 6. If f : M1 → M2 is uniformly continuous, it is also (ϵ∗, δ∗)-

continuous for all ϵ∗, δ∗ in the set {(ϵ, δ) : ϵ = UC(δ)}, where we denote UC as

the function that, given a value of δ, outputs a suitable corresponding value of ϵ

from the definition of uniform continuity for f .
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Continuity does not, however, imply (ϵ, δ)-continuity. As a counterexample,

again take M1 = M2 = R with the standard metric, and consider f(a) = a2. f is

continuous as for any a ∈ A and δ > 0, set ϵ = min(1, | δ
2a+1

|); then any b within

ϵ of a will satisfy |f(a) − f(b)| = |a2 − b2| = |a + b| · |a − b| < |2a + δ| · δ
|2a+1| ≤

|2a + 1| · δ
|2a+1| = δ. However, suppose by way of contradiction that f is (ϵ∗, δ∗)-

continuous for some fixed ϵ∗ and δ∗. Choose any a > δ∗

ϵ∗
, and consider the two

points a, a + ϵ∗

2
∈ M1. Clearly the distance between these two points is less than

ϵ∗. However, we have that |f(a) − f(a + ϵ∗

2
)| = (a + ϵ∗

2
)2 − a2 = (2a + ϵ∗

2
) · ϵ∗

2
>

2a · ϵ∗

2
= aϵ∗. By the choice of a, this is greater than δ∗, and so it cannot be the

case that f is (ϵ∗, δ∗)-continuous for any ϵ∗ or δ∗.

K-Lipschitz continuity is essentially the strongest condition out of what we

have discussed here, since it implies (uniform) continuity as above and also guar-

antees us a version of (ϵ, δ)-continuity. In this way it provides us some further

intuitive evidence for why it might be natural to gravitate to a Lipschitz condition

in the definition of fairness through awareness. One other thematic takeaway is

that the innovation in conceiving of individual fairness is the application of well-

understood mathematical structures to wholly new domains, allowing us to carry

over established results into new paradigms.

4.3 An Alternate Definition of Existential DE

Recall the definition for existential DE given in Part 2: following the setup, θ

is ϵ-existentially DE if |PEθ
1 − PEθ

2 | > ϵ, where PEθ
i = 1

|Xi|
∑

x∈Xi
I{xθ=∅} is the

proportion of values of θ in Xi that are ∅. We mentioned that this definition
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suffers from small sample variability, in which small group sizes might increase

the variability of PEθ
i and thus make the difference |PEθ

1 − PEθ
2 | more likely to

exceed ϵ from statistical noise.

To adjust for this, we can borrow from the literature on statistical inference.

Suppose that we model, for an individual x in group Xi, the likelihood that

xθ = ∅ as pi, determined by the group: xθ ∼ Bern(pi) |x ∈ Xi. In other words,

the proportion of empty values for θ within Xi is pi. We expect that pi should be

equal across groups; if this is not the case, then there is some issue with getting

values of θ across groups. Checking if p1 = p2 is a situation that the two-proportion

Z test is designed for, which gives us an alternate definition.

Definition 24. Let PEθ
1 and PEθ

2 denote the proportion of empty values of θ in

X1 and X2, respectively, and let PEθ = 1
|X|
∑

x∈X I{xθ=∅} denote the proportion

of empty values of θ overall. Let n1 = |X1| and n2 = |X2|. Define z as

z =
PEθ

1 − PEθ
2√

PEθ(1− PEθ)
(

1
n1

+ 1
n2

) .
Then we say θ is ϵ-existentially statistically DE if P (|Z| > z) < ϵ, where Z ∼

N (0, 1) is a standard Normal random variable.

Specifically, z as above is the two-tailed test statistic for testing the hypothesis

H0 : PEθ
1 = PEθ

2 . Assuming H0, it can be shown that z follows the standard

Normal distribution. Thus, extreme values of z, both positive and negative, are an

indication that it is likely that PEθ
1 and PEθ

2 are different. Typically in statistical

testing, ϵ as we have defined it here is referred to as a p-value, and ϵ = 0.05 is

the threshold for determining whether or not z is significant.104 Also, since the

120



definition of existential statistical DE only requires us to know PEθ
1 and PEθ

2 ,

which can be obtained through the empirical distributions of θ within the groups

(µθ
i ), we can express the quantity P (|Z| > z) as given above in terms of a function

D of µθ
1 and µθ

2. Consequently, just like existential DE, this is also a special case

of distributional DE.

4.4 Miscellaneous Results

Here are some proofs that were omitted from the mathematical setup in Part 2.

Proposition. Let X be a finite set with groups {Xi} and let f be a map from

X to ∆A. Then the outcome probability measure, defined for Xi as the empirical

average of outcomes over Xi, µout
i =

∑
x∈Xi

f(x)

|Xi| , is a probability measure on A.

Proof. µout
i assigns to a ∈ A the mass 1

|Xi|
∑

x∈Xi
(f(x))(a), interpreting f(x) as a

probability measure in ∆A. Thus it defines the probability “mass” of singleton

elements in A. Then to prove µout
i ∈ A, it suffices to show that the sum of these

masses, i.e. the measure of A, equals 1, which also follows from f(x) being a

probability measure:
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µout
i (A) =

∑
a∈A

µout
i (a)

=
∑
a∈A

(
1

|Xi|
∑
x∈Xi

(f(x))(a)

)

=
1

|Xi|
∑
x∈Xi

∑
a∈A

(f(x))(a)

=
1

|Xi|
∑
x∈Xi

1

= 1

which is what we wanted.

Observe that outcome probability measures are members of ∆A (in contrast

with induced probability measures, which are over X). We also note that in the

more general setting where groups are probability distributions over V (which

we do not directly address), Dwork et al. write µout
i = Ex∼Xi

f(x), replacing an

empirical average for an expectation28.

Proposition. Suppose X has metric dX and probability measure µX . Then

X , the group space, is a metric probability space with respect to the metric

dX (Xi, Xj) = Wd(Xi, Xj) and the naturally-induced probability measure µX de-

fined by µX (Xi) = µX(Xi) =
∑

x∈Xi
µX(x).

Proof. We take Wd(Xi, Xj) to mean Wd(µi, µj), where µi is the induced probabil-

ity measure for Xi. Observe that if we identify Xi with µi, we get an isomorphism

of sets between X and the set of induced group probability measures {µi}gi=1,
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which is a subset of ∆X. The fact that dX is a metric over X then follows from

the above fact that Wd is a metric over ∆X and subsets of metric spaces are

metric spaces.

We have also specified in the definition of µX how it assigns probability “mass”

to the singleton elements of X directly in terms of µX : µX (Xi) = µX(Xi) =∑
x∈Xi

µX(x). Since the Xi form a partition of X, it is immediate that µX (X ) =∑
i

∑
x∈Xi

µX(x) =
∑

x∈X µX(x) = 1. In essence, µX is a more quantized version

of µX , and its definition is nothing more than a notational trick using the fact

that we consider Xi both as subsets of X and as elements of X . This makes µX

a probability measure on X .

Here we can also extend this concept to handle the more general case where X

is continuous instead of finite and Xi are also continuous subsets by considering

the general definition of the Wasserstein (or earthmover) distance, Wd(µ1, µ2) =

infν∈U
∫
a,b∈M d(a, b)ν(a, b). As µX is then a measure over a continuous set, the

definition µX (Xi) = µX(Xi) remains unchanged.

4.5 Catalog of Probability Measures

Assume X is a finite set of representations of individuals, split into groups {Xi}.

Let X denote the group space where each each element identifies a group Xi. θ

denotes a feature within each representation taking values in Θ. A task is a map

f : X → R.

We have encountered various different (probability) measures in this thesis

which we summarize here. Recall that as a probability distribution can be defined
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by a probability measure, in this thesis we have treated a measure µ as synonymous

with the distribution it represents. Also note that we take “distribution of θ” to

mean “distribution of values of θ over Θ̃”.

• µX ∈ ∆X is the probability measure with which X is endowed. If it is

not defined a priori, then we take µX to be the measure for the uniform

distribution, µX(x) =
1

|X| .

• Given µX , µi ∈ ∆X is the induced probability measure for Xi, defined as

µi(x) =
µX

µX(Xi)
. It is used to define Wasserstein distances between groups.

• Assume R = ∆A, where A is a finite set of classes. Given f , µout
i ∈ ∆A is

the outcome probability measure for Xi, defined as the empirical average of

outcomes in the group, µout
i (a) = 1

|Xi|
∑

x∈Xi
(f(x))(a).

• Given µX , µX ∈ ∆X is the probability measure on the group space X ,

defined as µX (Xi) = µX(Xi) where Xi is treated on the left-hand side as an

element of X and on the right-hand side as a group (subset of X).

• Given a feature θ ∈ Θ̃, µθ
i ∈ ∆Θ̃ is the probability measure of the empirical

distribution (over values) of θ within Xi.

• Given an underlying feature θ∗ ∈ Θ∗, µ∗ ∈ ∆Θ∗ is the probability measure

for the underlying distribution, a distribution (over values) of θ∗ which we

assume is the same across groups. Then the empirical distribution of a proxy

feature θ, µθ
i , can be determined given µ∗ and the semantic relation Rθ

i for

the group Xi.
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