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Abstract
Existing discussions of voting rules and group fair-
ness in approval voting have been largely limited to
single-stage settings where elections are considered
in isolation. We extend this discussion by building
upon the incipient literature on perpetual voting,
which considers voting mechanisms and fairness
guarantees in multi-period settings. We introduce
criteria to characterize weighted voting rules that
are intuitively appealing and tractable in the per-
petual setting. We then investigate the properties
of such rules in relation to justified representation
(JR) and extended justified representation (EJR).
In particular, we formulate classes of consecutive-
loss based weighted voting rules, and identify con-
straints under which such rules satisfy or approx-
imate JR and EJR. Finally, we test voting rules
which empirically satisfy or approximate properties
of fairness with perpetual voting simulations.

1 Introduction
While fairness properties in single-stage elections are well-
studied, our conception of fairness might extend beyond one
period. Consider a sequence of several elections between two
candidates with the winner determined by majority. One can-
didate might occupy a 49% minority in each, yet lose all the
elections. A mechanism that seems fair when each election
is considered individually may be unfair to minorities when
applied over a sequence of elections.

Perpetual voting rules, proposed by Lackner [2020] and
Lackner and Maly [2021; 2023], are a class of voting rules
that operate over multi-period settings, considering the his-
tory of voters’ electoral representation as inputs to the out-
come of the current election. These rules offer a mechanism
to satisfy intertemporal conceptions of fairness by providing
some representation for minorities across periods, since vot-
ers who have been left unsatisfied in previous elections may
be weighted more highly than those who have been satisfied.

As with Lackner and Maly [2023], we start with the im-
portant desideratum of perpetual voting rules that they should
be simple and interpretable. Considering what Lackner and
Maly [2021] call “basic weighted approval methods” that
simply reweight voters after each election, we propose that

we can distinguish the complexity of these basic rules by the
growth rate in equivalence classes of the reweighting func-
tion. We focus on a class of particularly simple basic rules by
this metric—rules which determine weights based on voters’
number of consecutive losses—and investigate the extent to
which they achieve notions of proportional representation in
the multi-period setting.

This paper advances the literature on perpetual voting by
filling in two gaps in prior work. First, to our knowledge,
this paper is the first rigorous treatment of justified represen-
tation (JR) and extended justified representation (EJR) in the
online multi-period setting with dynamic preferences. Since
none of the rules suggested by Lackner and Maly [2021;
2023] achieve EJR, they contend that perpetual rules should
be evaluated in relation to weaker criteria like apportionment
lower quota. However, since JR and EJR are well-established
in the single-period problem of selecting a k-member com-
mittee, it is natural to study whether similar group fairness
guarantees can hold when preferences change over multiple
elections. Bulteau et al [2021] suggest multi-period versions
of JR and EJR, but they consider the easier setting of of-
fline preferences, deviating from the intention of Lackner and
Maly’s original perpetual voting framework. We believe our
work on JR and EJR in online perpetual voting opens up this
direction for further research.

Second, we make progress on the front of discovering in-
terpretable perpetual rules by demonstrating that consecutive-
loss-based basic rules approximate proportionality. Lack-
ner and Maly [2023] show negative results for win-based
and loss-based basic rules, and take these results to moti-
vate the study of non-basic rules, such as Phragmen’s rule,
which are significantly more complex. However, there is
much unexplored middle ground between the two extremes,
and the Pareto frontier for the tradeoff between fairness and
interpretability is unknown. Our proposed complexity metric
gives us a tool for understanding this tradeoff, and our find-
ing that consecutive-loss rules, which are the same level of
complexity as Lackner’s win-based and loss-based rules, can
satisfy JR and approximate EJR, is a step toward developing
perpetual rules that are both fair and interpretable.

1.1 Related work
Prior to Lackner [2020]’s work formalizing perpetual voting,
several alternate approaches to the multi-period representa-



tion problem had been suggested, including Frege’s method
(Harrenstein [2020]), sequential Nash welfare maximization
(Freeman et al [2017]), dynamic voting (Parkes and Procac-
cia [2013]), and storable votes (Casella [2012]). These frame-
works were created to study objectives other than voter group
fairness and/or require substantially more information about
preferences than perpetual voting.

Since Lackner [2020]’s introduction of perpetual voting,
more work has studied online-preference voting models, par-
ticularly online approval-based committees (Do et al [2022];
Israel and Brill [2021]; Brill et al [2022b]; Imber et al [2022]).
While these papers achieve positive results for fairness guar-
antees, their models differ substantially from the perpetual
voting setting; the target committee size is known and prefer-
ences are revealed for one candidate at a time, so candidates
are elected to the committee in only a subset of the periods.

2 Preliminaries
2.1 Perpetual voting
Following Lackner and Maly [2021; 2023], we consider an
online model with dynamic preferences in which future can-
didates and preferences are not known and the winner in
each period is determined solely based on previous and cur-
rent preferences and previous winners. Denote N = {1, ...},
[k] = {1, ..., k}, a1:k = (a1, ..., ak), and let P(S) be the
power set of S. In each period i, a set of voters V submits
approval ballots for a set of candidates Ci. Though the voter
set is fixed between periods, the candidate set need not be.
Let Ai : V → P(Ci) denote the approval ballots in period
i.1 The tuple (V,Ai, Ci) defines a decision instance for pe-
riod i, which can be thought of as a single election in a series.
A k-period sequence of elections and voting preferences can
be written as a k-decision sequence D = (V,A,C), contain-
ing a set of voters V , a k-tuple of candidate sets C = C1:k,
and a k-tuple of approval profiles A = A1:k, reflecting voter
preferences over all k periods.

A perpetual voting rule is a specification for all i ∈ N of
a map (V,A1:i, C1:i, w1:i−1) 7→ wi. Iteratively applying a
perpetual voting rule over a specific k-decision sequence pro-
duces a winner sequence w = (w1, ..., wk) of length k, but
the rule itself must be defined to select candidates over any
number of periods. Denote Wi := {v ∈ V | wi ∈ Ai(v)} ⊂
V the set of voters that approved the winner in period i.

2.2 Justified representation
We adapt the notions of JR and EJR to the perpetual set-
ting. Since approval sets may shift, so may voter groups,
creating ambiguity about which groups deserve representa-
tion. We borrow an “all-periods” interpretation from Bulteau
et al [2021], under which groups need to be represented if
their approval sets overlap in every period.
Definition 2.1 (Group cohesion). A group of voters V ′ ⊂ V
is cohesive over k periods if ∀i ∈ [k], ∩v∈V ′Ai(v) ̸= ∅.
Definition 2.2 (JR). For a given k-decision sequence D, a
winner sequence w = w1:k satisfies Justified Representation

1Unlike Lackner [2020], we allow voters to approve the empty
set. Appendix A.1 explains why this does not affect any results.

(JR) if for every cohesive V ′ ⊂ V such that |V ′| > |V |/k,
there exists some period j in which wj ∈

⋃
v∈V ′ Aj(v), i.e.

some voter in the group is satisfied in at least one period.
Definition 2.3 (EJR). For a given k-decision sequence D,
a winner sequence w = w1:k satisfies Extended Justified
Representation (EJR) if for every cohesive V ′ ⊂ V such
that |V ′| > ℓ · |V |/k, it holds that for some voter v ∈ V ′,
|{i ∈ [k] | wi ∈ Ai(v)}| ≥ ℓ, i.e. some voter in the group is
satisfied in at least ℓ periods.
Definition 2.4 (Voting rules). A voting rule satisfies (E)JR if
for every k ∈ N, applying the rule to any k-decision sequence
(V,A,C) produces a winner sequence that satisfies (E)JR.

The main difficulty of fairness in perpetual voting results
from the combination of two circumstances. First, the candi-
date set and voter preferences may change between periods.
Second, in addition to future candidates and preferences be-
ing hidden to the election mechanism, the time horizon (num-
ber of periods) is unknown in advance. Perpetual rules must
be specified for all time horizons; our goal is to design mecha-
nisms that achieve fairness guarantees considering the results
of the elections that have occurred, regardless of when the
election process stops. Rules must select winner sequences
whose prefix sequences of any length satisfy (E)JR.

When either of these two degrees of freedom are re-
stricted, rules that satisfy EJR can be constructed by ex-
tending insights from prior work on single-period commit-
tee elections. When candidates and preferences are static
between periods, but the time horizon remains unknown,
the model reduces to that considered by Brill et al. [2020;
2022a], which shows a committee-monotonic rule generaliz-
ing the D’Hondt apportionment method that achieves EJR.
However, the behavior of this method is not well-defined
when candidates and preferences change over time. On the
other hand, if the time horizon of elections is known, a rule
that accomodates dynamic preferences and satisfies EJR can
be constructed by extending Peters and Skowron [2020]’s
Rule of Equal Shares.
Definition 2.5 (Perpetual Equal Shares). Each voter v ∈ V
starts with a budgetB1(v) of 1. In each period i, the rule con-
siders buying a candidate among the candidate setCi. Buying
a candidate costs |V |/k dollars in total. If a candidate c is se-
lected, the total cost is split among all voters approving c as
evenly as possible – each voter either pays a universal amount
q or the remainder of their budget Bi(v), if Bi(v) < q. In
each period, the rule selects the candidate among the Ci that
minimizes q, and then budgets are adjusted accordingly. If no
candidate is affordable even if all supporting voters pay their
entire budget, the rule selects candidates arbitrarily.
Proposition 2.1. Perpetual Equal Shares satisfies EJR.

Both the rule itself and the proof that it satisfies EJR, pro-
vided in Appendix B, require minimal adjustment from Peters
and Skowron [2020]’s original formulation, the main differ-
ence being that the candidate set and voter preferences change
in every iteration. Notably, since Equal Shares is polynomial-
time computable, Proposition 2.1 disproves Conjecture 1 in
Bulteau et al [2021] that achieving PJR (a strictly weaker con-
dition than EJR) when the time period is known is NP-hard.



However, the rule is immutably horizon-dependent, since the
cost to buy any candidate |V |/k reflects how much voters
who have been satisfied must be penalized in favor of un-
represented voters – it is not true that winners in the first k
periods will be the same if a longer time horizon is consid-
ered. For the rest of the paper, we return to the more general
setting in which we assume rules are performed with respect
to an unknown time horizon and seek to identify rules that
satisfy fairness criteria regardless of the time horizon.

3 Basic rules
Our aim is to investigate the extent to which fairness guar-
antees can be achieved by simple rules that can be easily ex-
plained to voters. To begin, we revisit what Lackner and Maly
[2021] call basic rules:
Definition 3.1. A basic perpetual rule satisfies the following:

• In period 1, each voter vj has weight α1(vj) = 1.
• In period i, each voter vj has weight αi(vj) > 0, there

exist functions fi, gi such that fi(x) ≥ x and gi(x) ≤ x
for all x, and 2

αi+1(vj) =

{
fi(αi(vj)), vj ̸∈Wi

gi(αi(vj)), vj ∈Wi

For G ⊂ V , denote νi(G) :=
∑

v∈G αi(v) to be the
total weight of all voters in G in period i.

• A candidate wins if they receive the most weighted
votes, with some method of breaking ties.

Basic rules are a particularly interpretable class of rules:
they have sparse memory, i.e. they require minimal informa-
tion about voter preferences in previous periods to compute
(storing only a single numerical weight per voter); voters’
weights are an intuitive proxy for how much their preferences
matter in any election; and adding up votes is an especially
canonical way to decide elections. Still, the space of basic
rules is very large, and it is possible to select rules whose
behavior is unintelligible.

We seek to develop a metric for a basic rule’s level of com-
plexity. Under Definition 3.1, two voters that have experi-
enced the same pattern of “wins” (periods i in which wi ∈
Ai(v)) and “losses” (periods i in which voter wi ̸∈ Ai(v)) up
to but excluding period k must have the same weight in period
k. On the other hand, the functions fi, gi may be specified so
that any voters that have different win/loss records have dif-
ferent weights. Thus, a basic rule can equivalently be given
the following structure:
Definition 3.2. Let a voter v’s win/loss record before period
k be encoded as a set Rk := {i ∈ [k − 1] | v ∈ Wi}. A
basic rule Φ is a specification for all k ∈ N of a map ϕk :
P([k − 1])→ R+, such that ϕ1(∅) = 1 and

• For R ⊂ [k − 1], ϕk+1(R) ≥ ϕk(R) and ϕk+1(R ∪
{k}) ≤ ϕk(R).

• If ϕk(R) = ϕk(R
′), then ϕk+1(R) = ϕk+1(R

′) and
ϕk+1(R ∪ {k}) = ϕk+1(R

′ ∪ {k}).
2We allow f and g to depend on the period i, which is more

general than Lackner and Maly [2021].

In period k, if voter v has win/loss record Rk, they have
weight αk(v) = ϕk(Rk). A candidate wins if they receive
the most weighted votes, with some method of breaking ties.

Under this formulation, it is clear that in period k, a ba-
sic rule partitions the voter set into up to |Imϕk| ≤ 2k−1

equivalence classes of voters with the same weight, with each
equivalence class in period k being a subset of some equiv-
alence class in period k − 1. It is thus possible to construct
valid basic rules that utilize the entire permutation of a voter’s
win/loss record:
Example 3.1. Let ϕk(R) be the numerical value ofR\[k−1]
treated as a binary representation, where period 1 is the least
significant digit and period k − 1 is the most significant.3

On the other hand, the simplest rules throw away most of
this information, and create far fewer equivalence classes.
Example 3.2. Let ϕk(R) = k − |R|.4

We can therefore recognize the complexity of a basic per-
petual rule by the growth rate of the number of equivalence
classes the rule distinguishes as the number of electoral peri-
ods increases. Specifically, defining the complexity function
cΦ of a rule Φ to be the map k 7→ |Imϕk| allows us to com-
pare the complexity of two rules:
Definition 3.3. Given two basic rules Φ,Ψ, define Φ to be
more complex than Ψ if cΦ(k) ∈ O(cΨ(k)).

Intuitively, a less complex rule uses less information about
a voter’s win/loss record to compute their electoral weight.

Finally, we restrict our consideration to rules for which vot-
ers’ weights never increase if they counterfactually approve
additional winning candidates, which are more well-behaved:
Definition 3.4. An ordinal-preserving rule has the additional
constraint that if R ⊂ R′ ⊂ [k − 1], then ϕk(R′) ≤ ϕk(R).5

4 Linearly-bounded rules
According to the metric provided by Definition 3.3, the sim-
plest rules to study are those in which the complexity function
is linear (cΦ(k) ∈ O(k)). To construct such rules, we must
classify win/loss records by some property that is supported
on a set with cardinality linear in the number of periods. Four
properties are naturally appealing: the total number of wins,
the total number of losses, the number of consecutive wins
since the last loss, and the number of consecutive losses since
the last win. Lackner and Maly [2023] show negative results
for win-based and loss-based rules with respect to some weak
proportionality criteria. Indeed, we show that they cannot sat-
isfy even JR without extreme distortion of voter weights.
Proposition 4.1. Let Φ be an ordinal-preserving basic rule
that satisfies JR for every way of breaking ties. For all k ∈ N,
the following condition must hold:

ϕk(∅) >
∑k−1

i=1
ϕk({i})

3The formulation of this rule under Definition 3.1 is as follows:
let fk(x) = x+ 2k−1; let gk(x) = x.

4Under Definition 3.1: fk(x) = x+ 1; gk(x) = x.
5Under Lackner and Maly’s definition, rules for which fi and gi

are always nondecreasing are ordinal-preserving.



The full proof in Appendix B involves considering a k-
decision sequence in which k voters have disjoint preferences
in the first k − 1 periods, and the winner rotates through the
preferred choice of the first k−1 voters; for JR to be satisfied,
the winner in the kth period must be the kth voter’s preferred
choice even if all other voters rally around another candidate.
Corollary 4.1. Let Φ be an ordinal-preserving basic rule that
satisfies JR for some way of breaking ties. For all k ∈ N, the
following condition must hold:

ϕk(∅) ≥
∑k−1

i=1
ϕk({i})

Though basic rules are generally sequences of maps ϕk :
P([k− 1])→ R+, for rules with linear complexity it is often
simpler to factor ϕk as a composition of maps ϕ̃◦rk, where rk
is a “reduction” map taking win/loss records to a set with sup-
port with cardinality linear in k (for example, the map from a
record to its total number of wins) and ϕ̃ does not depend on
k. The following are consequences of Corollary 4.1:
Proposition 4.2. Let rk map to the number of wins. No such
rule satisfies JR, unless ϕ̃(k) = 0 for all k > 0.
Proposition 4.3. Let rk map to the number of losses. No such
rule satisfies JR, unless ϕ̃(k) ≥ k! for all k.
Proposition 4.4. Let rk map to the number of consecutive
wins. No such rule satisfies JR.
Proposition 4.5. Let rk map to the number of wins, losses,
or consecutive wins. No such rule satisfies EJR.

These strong negative results motivate our study of
consecutive-loss based rules. For the rest of the paper, we
let rk map to the number of consecutive losses.

5 Consecutive-loss rules
Our general strategy for proving results related to the JR and
EJR properties of consecutive-loss based rules is to study an
adversarial agent that tries to construct a decision sequence
for which the winner sequence produced by the rule fails the
relevant criteria. We suppose that a cohesive group G ⊂ V
large enough to deserve representation exists, but the adver-
sary is allowed to select the preferences of the non-group vot-
ers in every period, and it attempts to manipulate the non-
group voters’ preferences in a way such that G is not suf-
ficiently represented by the rule’s chosen winner sequence.
This setup enables us to treat JR and EJR-related proofs as
constrained optimization problems.

5.1 Adversarial strategies
Consider JR satisfaction over k periods. Say G ⊂ V is
“represented” in period i if some v ∈ G is satisfied (i.e.
wi ∈ Ai(v)).

Definition 5.1. For a k-decision sequence D = (VD, A, C),
a rule Φ, and a group G ⊂ VD, an adversarial strategy
A = (A1|V \G, ..., Ak−1|V \G) is a tuple of non-group ap-
proval profiles in periods 1, ..., k− 1 such that replacing non-
group approval profiles in D withA and iterating Φ produces
a winner sequence such that G is not represented in these pe-
riods. Abbreviate SD,G the set of all adversarial strategies for
(D,Φ, G) (where Φ is implicit).

Lemma 5.1. A rule Φ satisfies JR iff for all k ∈ N and all
k-decision sequences D and cohesive groups G ⊂ VD with
|G| ≥ |VD|/k, either SD,G = ∅ or

maxA∈SD,G
νk(V \G) <

1

k
|V | · ϕ̃(k − 1)

Proof. In any decision sequence D, the total vote weight of
G in period k is |G| · ϕ̃(k − 1) ≥ 1

k |V | · ϕ̃(k − 1), since
each v ∈ G has suffered k − 1 consecutive losses. Thus, if
the inequality holds, ν(G) > ν(V \ G) and some candidate
approved by a voter in G is guaranteed to win in period k. If
it does not hold, then G can fail to be represented in period
k (and therefore all periods 1, ..., k) if all non-group voters
V \G approve some other candidate in period k.

Thus, given k-decision sequence D and group G, a logical
approach for the adversary is to find an adversarial strategy
A ∈ SD,G that maximizes νk(V \ G), the total vote weight
of non-group voters in period k. This approach entails the
following maximization

maxA∈SD,G
νk(V \G) =

∑
v∈V \G

αk(v) subject to

1

i
|V | · ϕ̃(i− 1) ≤

∑
v∈(V \G)∩Wi

αi(v)

which amounts to choosing the number of non-group voters
in each period that approve the winner among each equiv-
alence class of vote weights. This problem reduces from
an integer linear program whose behavior may change de-
pending on the total number of voters |V |, and is NP-hard.
Fortunately, we can make evaluating Lemma 5.1 easier by
recognizing that integer-valued adversarial strategies exist in
the space of real-valued adversarial strategies, and complet-
ing SD,G to allow approval sets to be assigned to arbitrary
“slices” of voters. A finite voter set restricts the actions of
the adversary because it can only select integer quantities of
voters to have particular preference profiles. If we can upper
bound νk(V \G) when the adversary can subdivide voters ar-
bitrarily in a continuous setting, then this bound holds when
the adversary must subdivide voters into integer quantities.

The “continuous electorate” requires some additional nota-
tion. For simplicity, we normalize the electorate to the inter-
val V = [0, k], and discuss vote “density” αi in a way that is
analogous to vote weight. For slice V ′ ⊂ V , we denote µ(V ′)
the Lebesgue measure of V ′, which is invariant between pe-
riods; µ(V ′)/k corresponds to the slice’s proportion of the
total electorate. We distinguish between “voters” µ(V ′) and
“votes” νi(V ′) =

∫
V ′,µ

αi, the weighted votes contributed by
such voters in period i; for instance, if slice V ′ has uniform
density αi, then νi(V ′) = µ(V ′) · αi.
Definition 5.2 (Ordering of strategies). For a givenD,G, ad-
versarial strategy A dominates A′ if applying A weakly in-
creases νk(V \ G) compared to applying A′. The maximal
strategy A ∈ SD,G dominates all A′ ∈ SD,G.

In each period i, to deny G representation, the adversary
must select enough voters to form the Wi that approves some
alternative to G’s supported candidate that wins the election.
It is clear that since voters are never rewarded for approving
additional winners, a maximal strategy entails selecting no
more than exactly enough voters to beat G’s candidate.



Definition 5.3. Assume applying strategyA produces winner
sequence w1:k−1. A is Pareto efficient in period i if (1) for
all v ∈ V \ G, either Ai(v) = {wi} or Ai(v) = ∅; and (2)
νi(Wi) = νi(G).
Lemma 5.2. If Φ is an ordinal-preserving rule6 and A is an
adversarial strategy, for any i, there exists a strategy A′ such
that A′ dominates A; A = A′ in periods 1, ..., i − 1; and A
is Pareto efficient in period i. For any D,G, there exists a
maximal strategy that is Pareto efficient in all periods.

However, the optimal allocation of non-group voters to Wi

depends on the particular rule – specifically, it depends on the
direction of the following inequality.
Inequality 5.1. Given ϕ̃, define ψ(0) = 0 and ψ(x) = ϕ̃(x−
1) for x ∈ N. For all k ∈ N, m < n ∈ N:

ψ(k +m)− ψ(k)
ψ(m)

(≤,≥,=)
ψ(k + n)− ψ(k)

ψ(n)

5.2 Discount rules
We briefly return to another consequence of Corollary 4.1:
Proposition 5.1. Let ϕ̃ define a consecutive-loss rule. If there
exists K, ε > 0 such that for k > K, ϕ̃(k) ≤ 2 · ϕ̃(k−1)− ε,
the rule fails JR.

This limiting condition on consecutive-loss rules that sat-
isfy JR motivates us to study the following class of rules:
Definition 5.4 (Discount rules). For parameters δ, b, define
the discount rule ϕ̃(k) = δ · ϕ̃(k − 1) + b.
Theorem 5.1. Discount rules with δ > 2.619 and b = 0
satisfy JR for every way of breaking ties.

The proof applies the following lemmas:
Lemma 5.3. If ϕ̃ is a discount rule with b = 0, then ϕ̃ satisfies
Inequality 5.1 in the ≤ direction.
Lemma 5.4. If ϕ̃ satisfies Inequality 5.1 in the ≤ direction,
then for allD,G over k periods, there exists a Pareto efficient
maximal strategy under which for all i ∈ [k], Wi ⊂Wi+1.

In other words, the maximal strategy is to preferentially
select the non-group voters with the least density to approve
the winner in every period.
Proof of Theorem 5.1. WLOG let G = [0, 1]. Consider the
maximal strategy provided by Lemma 5.4. SinceWi−1 ⊂Wi

and νi(Wi) = ϕ̃(i− 1) = δi−1 for each i,

µ(Wi) = 1 +
(
1− 1

δi−1

)
µ(Wi−1) = i−

∑i−1

j=1

µ(Wj)

δj

Now we try to bound νk(V \G). We can loosely upper bound
µ(Wi) by i:

µ(Wk−1) ≥ k − 1−
∑m−2

i=1

i

δi
> m− 1− δ

(1− δ)2

νm(V \G) = µ(Wm−1) + δm−1(m− 1− µ(Wm−1))

Applying Lemma 5.1, a discount rule satisfies JR if we can
show that under the maximal strategy, νk(V \ G) < δk−1 ≤
νk(G), which is the condition that

hδ(k) =
δ

(1− δ)2
+
k − 1

δk−1
< 1

6All consecutive-loss rules are ordinal-preserving by definition.

For δ > 2.95, the above holds for all k ≥ 3. A technical note
in Appendix B reduces the bound to δ > 2.619.

Since higher δ causes more weight distortion between vot-
ers with the highest and lowest weights, we may wish to find
the smallest δ for which a discount rule exists that satisfies
JR. By setting b = 1, we can exactly achieve the theoretical
lower bound given by Proposition 5.1.
Theorem 5.2. Discount rules with δ ≥ 2 and b = 1 satisfy
JR for every way of breaking ties.

Again, we require the following lemmas:

Lemma 5.5. If ϕ̃ is a discount rule with b = 1, then ϕ̃ satisfies
Inequality 5.1 with exact equality (=).

Lemma 5.6. If ϕ̃ satisfies Inequality 5.1 with exact equality,
then for allD,G over k periods, all Pareto efficient strategies
are maximal.
Proof of Theorem 5.2. Let G = [0, 1]. Consider the following
strategy: Wi = [i, i+1] for i ∈ [k− 1]. Since this strategy is
Pareto efficient, by Lemma 5.6, it maximizes νk(V \ G). In
period k, for each i ∈ [k− 1], αi([i, i+1]) = ϕ̃(k− i− 1) =∑k−i−1

j=0 δj = δk−i−1
δ−1 . Thus, the JR condition is

νk(V \G) =
δk − kx+ k − 1

(δ − 1)2
<
δk − 1

δ − 1
= νk(G)

which is satisfied for all k iff δ ≥ 2.

5.3 Polynomial rules
While discount rules can satisfy JR, they do not satisfy EJR.
For rules that do not provide an EJR guarantee, we can ask if
rules satisfy an approximation to it:
Definition 5.5 (Approximations). For a given k-decision se-
quence D, a winner sequence w = w1:k α-approximates JR
if for every cohesive V ′ ⊂ V such that |V ′| > α · |V |/k,
there exists some period j in which wj ∈

⋃
v∈V ′ Aj(v). A

winner sequence w = w1:k α-approximates EJR if for every
cohesive V ′ ⊂ V such that |V ′| > αℓ · |V |/k, it holds that for
some voter v ∈ V ′, |{i ∈ [k] | wi ∈ Ai(v)}| ≥ ℓ. A voting
rule α-approximates (E)JR if for every k ∈ N, applying the
rule to any k-decision sequence produces a winner sequence
that α-approximates (E)JR.

Unfortunately, discount rules perform poorly even on this
weaker metric.
Theorem 5.3. If there exists K, δ > 1 such that for k > K,
ϕ̃(k) ≥ δ · ϕ̃(k − 1), the rule fails any α-approximation of
EJR for any way of breaking ties.

Discount rules increase the weights of unsatisfied voters
very rapidly, which enables them to satisfy JR because unsat-
isfied groups that have waited enough periods are guaranteed
high enough weight to decide the election, but this weight
distortion does not favor the rules’ proportionality guaran-
tees, since groups that have recently been represented are very
heavily penalized. For rules that approximate both JR and
EJR, we look to consecutive-loss rules with slower rates of
increase.
Definition 5.6 (Polynomial). For parameter p, define the
polynomial rule ϕ̃(k) = (k + 1)p.



Theorem 5.4. The polynomial (linear) rule for p = 1 satis-
fies a 2-approximation of JR.

The α-approximation proof for JR is the same as that for
exact satisfaction: we assume |G| ≥ α · |V |/k, and maximize
νk(V \G) over the space of adversarial strategies. The linear
rule satisfies Inequality 5.1 with equality, so we apply Lemma
5.6 and the proof follows similarly to that of Theorem 5.2.
Theorem 5.5. Polynomial rules for 1.01 < p < 10 satisfy a
(1 + 1/p)-approximation of JR.

The proof uses the following lemmas, which state that the
maximal strategy is to preferentially select the non-group vot-
ers with the most density to approve the winner in every pe-
riod (unlike in Theorem 5.1).
Lemma 5.7. If ϕ̃ is a polynomial rule p > 1, then ϕ̃ satisfies
Inequality 5.1 in the ≥ direction.
Lemma 5.8. If ϕ̃ satisfies Inequality 5.1 in the ≥ direction,
then for allD,G over k periods, there exists a Pareto efficient
maximal strategy under which for all i ∈ [k], for anyA ⊂Wi

and B ⊂ (V \G) \Wi,
νi(A)
µ(A) ≥

νi(B)
µ(B) .

The full proof of Theorem 5.5 is provided in Appendix
B. Since polynomial rules increase voter weights slower than
discount rules, they allow for approximation of EJR:
Theorem 5.6. The polynomial (linear) rule for p = 1 satis-
fies a 2-approximation of EJR.
Proof sketch. To prove 2-approximation of EJR, we need to
extend our conception of adversarial strategies. Consider a
k-decision instance D, and a cohesive group G, |G| ≥ 2ℓ ·
|V |/k. Since any voter in G may be allowed to be satisfied
up to ℓ−1 times without the winner sequence satisfying EJR,
we allow the adversary to

• Partition G into finitely many subsets Gq;
• On each Gq , select the periods Rq ⊂ [k − 1] in which
Gq is satisfied, such that |Rq| ≤ ℓ− 1;

• Choose the preferences of non-group voters V \G such
that each Gq is satisfied in exactly periods Rq;

performing this process in a way that maximizes νk(V \G)−
νk(G). The third step of this optimization follows the same
maximization procedure as the JR adversary; since νk(G)
depends only on the subsets Gq and the periods in which
they are satisfied (Rq), the adversary must only choose how
to allocate voters V \ G to the Wi such that νk(V \ G) is
maximized. Again, as the linear rule satisfies Inequality 5.1
with equality, a version of Lemma 5.6 holds: considering the
first two steps of this optimization fixed, every Pareto optimal
strategy on the third step is maximal.

For each i, define Hi = G \Wi. Now for every period i,
under any Pareto optimal strategy

νi+1(V \G) = νi(V \G) + µ(V \G)− νi(Hi)

νk(V \G) = k · µ(V \G)−
∑k−1

i=1
νi(Hi)

Also, observe that

νk(G) +
∑k−1

i=1
νi(G \Hi) = k · µ(G)

Since every voter in G is represented at most ℓ− 1 times∑k−1

i=1
νi(G) ≥ ℓ ·

1

2
· k
ℓ
· (k
ℓ
+ 1)µ(G) ≥ k2

2ℓ
µ(G)

νk(V \G)− νk(G)

= k · µ(V \G)− k · µ(G)−
∑k−1

i=1
νi(G)

≤ k( k
2ℓ

)µ(G)− k · µ(G)− k2

2ℓ
µ(G) < 0

so G must be represented in period k.
Remark 5.1. Polynomial rules for p > 1 satisfy bounded
approximations of EJR for k ≤ 100 periods.

We search among adversarial strategies to derive EJR guar-
antees for polynomial rules in settings with few periods. The
results are described in further detail in Appendix C.

6 Simulations
While we have analyzed the theoretical worst-case (E)JR
guarantees of perpetual voting rules, these rules may per-
form differently in practice if adversarial cases are sparse.
Indeed, Bredereck et al [2019] found that under a range of
randomized voting simulations analyzing single-period com-
mittee selection that a majority of randomly-selected com-
mittees satisfied (E)JR. We thus perform simulations to better
understand the empirical performance of the rules discussed.

We compare several voting rules. As a baseline, we con-
sider plain approval voting (AV), which does not take into
account the perpetual setting. We consider the discount rules
Discount(δ, b) for (δ, b) ∈ {(2.5, 0), (1.5, 1), (2, 1)}, and the
polynomial rules Poly(n) for n ∈ {1, 1.1, 1.5, 2}. We add
two win-based rules: GreedyCC from Bulteau et al [2021],
and Perpetual PAV from Lackner and Maly [2023]. Finally,
we add Perpetual Phragmen, Lackner and Maly [2023]’s pre-
ferred voting rule, and Perpetual Equal Shares. More infor-
mation about these rules can be found in Appendix D.

For all simulations, we consider perpetual voting instances
with N voters, M candidates, and k periods. We gener-
ate k-decision sequences as follows. We create voter pref-
erences for the first election by, for each voter, randomly se-
lecting approved candidates, withM/4 approvals on average.
We generate subsequent preferences iteratively from previ-
ous election preferences: Each voter changes their votes for
Geom(0.5) arbitrarily-selected candidates, where Geom de-
notes the geometric distribution distributed on Z≥0. We dis-
cuss these design decisions further in Appendix D.

Since identifying EJR groups is NP-hard and thus com-
putationally intractable for large simulations, we evaluate
rules’ satisfaction of EJR by explicitly constructing a cohe-
sive group with distinct voting preferences, similar to a mi-
nority bloc, and testing for its representation. We consider
ℓ ∈ {1, 2, 3, 4}. For each value of ℓ, we consider instances
with M ∈ {3, 4, 5}, N = 1000, and k ∈ {10, 20}. (Larger
values of M , k, and ℓ were also tested, with similar results
to those presented.) In each instance, after generating a k-
decision sequence, we construct the group by randomly se-
lecting a proportion of ℓ/k of the voters, and having them
approve a randomly-selected candidate in each period, which
other voters do not approve. We then evaluate if the winners
produced by each voting rule fulfill the group’s EJR guaran-
tee. We run 100 instances for each setting of the parameters
(totally 600 per value of ℓ) and calculate the percentage of all



instances in which each rule produced a winner sequence that
satisfies EJR. Results are summarized in Table 1.

ℓ EJR Results for Rules

1

AV satisfied EJR in 0.2% of instances
Perpetual PAV satisfied EJR in 90.0% of instances
Poly(1) satisfied EJR in 97.8% of instances
All other rules satisfied EJR in 100% of instances

2

AV satisfied EJR in 0.0% of instances
Perpetual PAV satisfied EJR in 92.7% of instances
GreedyCC satisfied EJR in 46.2% of instances
Discount(2.5, 0) satisfied EJR in 99.7% of instances
All other rules satisfied EJR in 100% of instances

3

AV satisfied EJR in 0.2% of instances
Perpetual PAV satisfied EJR in 96.3% of instances
GreedyCC satisfied EJR in 31.3% of instances
Discount(2.5, 0) satisfied EJR in 50.5% of instances
Discount(2, 1) satisfied EJR in 75.0% of instances
All other rules satisfied EJR in 100% of instances

4

AV satisfied EJR in 50.0% of instances
Perpetual PAV satisfied EJR in 97.2% of instances
GreedyCC satisfied EJR in 19.7% of instances
Discount(2.5, 0) satisfied EJR in 2.0% of instances
Discount(2, 1) satisfied EJR in 18.7% of instances
Discount(1.5, 1) satisfied EJR in 94.2% of instances
Poly(2) satisfied EJR in 94.8% of instances
Poly(1.5) satisfied EJR in 99.8% of instances
All other rules satisfied EJR in 100% of instances

Table 1: Testing EJR on perpetual voting rules. For each value
of ℓ, we consider N = 1000 voters and vary M,k, resulting in
600 instances. Constructing a group of cohesive voters, we report
the total percentage of instances where the winner sequence satisfies
the group’s EJR guarantee, i.e. where the group was successfully
represented via EJR in the winner sequence produced by each rule.

An immediate observation is the necessity of having rules
equipped for perpetual voting: AV fails prominently, satisfy-
ing EJR in virtually no instances, except for the case ℓ = 4
(where we surmise that groups become large enough to pos-
sibly produce the majority vote).

Similarly, these results illustrate the advantage that worst-
case guarantees provide. While GreedyCC performs well for
ℓ = 1 (where JR and EJR are equivalent), its performance
degrades when considering larger groups. Perpetual Equal
Shares satisfies EJR in all instances as expected. Methods
which approximate JR or EJR also do well, which suggests
that theoretical guarantees for approximations or weaker no-
tions of representation can carry over to strong empirical per-
formance. Discount rules performed well for ℓ = 1, 2, with
Discount(1.5, 1) satisfying the majority of instances across
all ℓ, while polynomial rules did even better. We also note that
smaller values of δ in discount rules and smaller values of n in
polynomial rules improved performance: the Poly(1.1) rule
satisfied EJR for all instances. Overall, basic rules can do well
in satisfying EJR, as illustrated by the discount, polynomial,
and Perpetual PAV rules. Here, their performance effectively
matched that of Perpetual Phragmen and Equal Shares.

Additionally, rules satisfying EJR should intuitively

demonstrate notions of proportionality: the larger a cohesive
group, the more satisfied its voters should be (specifically,
the maximum satisfaction of the group should increase). To
explore this idea, we again consider the methodology for ex-
plicit group construction as mentioned above, but vary the
size of the constructed group. Setting M = 10, N = 100,
and k = 50, we consider cohesive group sizes within [2, 40].
For each size, we generate 100 instances and determine the
maximum voter satisfaction among the group given the win-
ners from the voting rule. Plotting the satisfaction against the
group size (as a proportion ofN ) shows that rules which carry
theoretical EJR guarantees or performed well above exhibit a
stronger linear relationship between group size and maximum
satisfaction, validating our intuition.

Figure 1: Maximum Group Voter Satisfaction (vertical axis) ver-
sus Group Size (horizontal axis). Rules which satisfied EJR poorly
in Table 1 show little to no linearity between maximum satisfaction
and size; better-performing methods exhibit stronger linearity.

7 Further research
This paper showed that interpretable weighted voting rules
can satisfy (E)JR in perpetual voting. A few natural directions
for further research arise.

First, since we treated the least complex basic perpetual
rules as a starting point, a clear extension is to study rules that
are one level up in complexity. For instance, rules that con-
sider both the total number of wins and consecutive losses
create O(k2) equivalence classes of voters after k periods.
Further work may also consider other polynomial-complexity
functions from P([k]). One open question is whether more
complex basic rules may approximate JR/EJR better than lin-
early bounded rules.

Furthermore, it may be interesting to consider versions of
JR/EJR that consider cohesion in a subset of periods. Bulteau
et al [2021] suggests “some-periods” versions of JR/EJR, but
it is unclear whether any perpetual rule can be constructed to
satisfy this criteria with an unknown time horizon. A perhaps
more tractable choice is to fix a window length k, and evaluate
whether a mechanism can be constructed that guarantees “all-
periods” JR/EJR at any point in time considering only the
most recent k elections.
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A Additional notes
A.1 Footnote 1: Note on empty approval sets
Lackner [2020] does not allow voters to express the empty
approval set. Indeed, one desideratum is that perpetual vot-
ing rules should elicit voters’ true preferences, and one way to
entice voters into expressing their true views in every period
is to eliminate the option of overtly strategizing by approving
nothing, which guarantees that they will be left unsatisfied
and therefore gain influence in later elections. However, em-
ploying this restriction merely obfuscates the strategic value
of purposefully attempting to approve no winning candidates
to increase one’s vote weight in the future, and in the gen-
eral space of decision sequences when the number of candi-
dates may exceed the number of voters, whether or not empty
approvals are allowed makes no difference for JR and EJR
properties. It is easy to observe this fact in the continuous-
electorate settings we discuss in the later sections of the pa-
per: if an adversary wishes to select a strategy such that vot-
ers V ′ ⊂ V \ G are guaranteed to not have approved the
winner, but still approve something in the electorate, we can
simply subdivide V ′ into many infinitesimal slices such that
the total vote weight of each slice is nearly zero, then declare
all the slices to have approved disjoint sets of candidates. In
the discrete setting, we can achieve a similar setup by hav-
ing enough voters to mimic this infinitesimal subdivision (so
that the vote weight of each individual slice in period i never
exceeds νi(Wi)).

We can see that this strategy does not work in more re-
stricted settings when the number of candidates is bounded
in each period, and small relative to the vote weights of indi-
vidual voters. For instance, if the number of candidates must
be ≤ M in every period, and voters are not allowed to ap-
prove the empty set, then the winning candidate must receive
νi(Wi) ≥ 1

M νi(V ) weighted votes, which is a meaningful
restriction on adversarial strategies. This setup may be an ad-
ditional interesting direction for further research.

A.2 General JR test for basic rules
To show discount rules satisfy JR in Section 5, we proved
that some optimal adversarial strategy maximizes µ(V \ G).
However, for more complex rules, the optimal adversarial
strategy may be hard to articulate. If the goal is to prove
JR only up to some fixed number of periods k, it is possi-
ble to utilize a linear program to find the optimal value of
νk(V \ G). For every i ∈ [k − 1], for every R ⊂ [i], de-
fine variable xi,R. Assuming a continuous electorate [0, k],
xi,R := µ({v ∈ V \ G | Ri(v) = R}), where Ri(v) is the
win-loss record of voter v up to and including period i. We
have the following constraints:

max
∑

R⊂[k−1]
ϕk(R)xk−1,R subject to

x1,{1} + x1,∅ ≤ k − 1

∀i > 1, ∀R ⊂ [i− 1], xi,R∪{i} + xi,R = xi−1,R

∀i,
∑

R⊂[i−1]
ϕi(R) · xi,R∪{i} ≥ ϕi(∅)

Since the number of constraints is exponential in the num-
ber of periods, using this linear program to test JR for large k

is computationally infeasible. However, for rules with poly-
nomial complexity functions, since the number of equiva-
lence classes of voters grows polynomially with the number
of periods, so does the number of constraints in this linear
program, as there is one constraint for each equivalence class.

B Omitted proofs
Proofs appear in the order that statements are presented in the
paper.

B.1 Section 2
Proposition 2.1
Assume k periods. Let G ⊂ V be a cohesive group such that
|G| ≥ ℓ · |V |/k, and assume that every v ∈ G is satisfied in
at most ℓ− 1 periods. Define p := |V |/k.

Define Bk+1(v) to be a voter’s budget after period k.
Lemma. After period k, some voter v ∈ G must have budget
Bk+1(v) < p/|G|.

Suppose the candidate is arbitrarily selected in period k.
Then in some period i ≤ k, there must exist no affordable
candidates. If all voters v ∈ G have a budget of at least
p/|G| in period k, they must have a budget of at least p/|G|
in period i, and since G is cohesive, they must agree on some
candidate c in period i. Thus, c is approved by voters with
combined budget at least p/|G| · |G| = p, so c is therefore
affordable in period i, which is a contradiction.

Suppose the candidate is not arbitrarily selected in period
k. All voters start with a combined budget of |V | and p is
subtracted from the combined budget in every period, so after
k periods, the combined budget of all voters is |V |−k ·p = 0,
and therefore all voters v ∈ G have budget 0.

Consider such voter v ∈ G whose budget Bk+1(v) <
p/|G|. Since v approves at most ℓ − 1 candidates in peri-
ods i ∈ [k], in some period i, they must have paid strictly
more than 1−p/|G|

ℓ−1 ≥ 1−1/ℓ
ℓ−1 = 1

ℓ .
Consider the first period i in which some voter v ∈ G pays

strictly more than 1
ℓ . Since voter v paid strictly more than

1
ℓ for the winning candidate wi, the q-value for wi must be
strictly greater than 1

ℓ . On the other hand, each voter v′ ∈ G
approved ≤ ℓ − 1 candidates in periods i′ < i and paid no
more than 1

ℓ for them, so the budget of v′ in period i is at
least 1

ℓ . Furthermore, since G is cohesive, all v′ ∈ G agree
on some candidate c in period i. Thus, in period i, the q-
value for c is at most 1

ℓ (since each v′ ∈ G paying 1
ℓ allows

paying candidate c’s total cost of |V |/k = 1
ℓ · ℓ · |V |/k ≤

1
ℓ ·|G|), which is a contradiction since the mechanism chooses
the candidate with the lowest q-value.

B.2 Section 3
Equivalence of Definitions 3.1 and 3.2
Suppose B = (fi, gi)i∈N represents a basic rule under Defi-
nition 3.1.

Construct a basic rule Φ under definition 3.2 as follows.
Define ϕ1(∅) = 1. Assume ϕi has been defined; now we
define ϕi+1. Consider some R ⊂ [i]. If i ∈ R, define
ϕi+1(R) = gi(ϕi(R \ {i})). If i ̸∈ R, define ϕi+1(R) =
fi(ϕi(R)).



Claim any voter v with some record R in period k has the
same weight under rules B and Φ. In period 1, α1(v) =
ϕ1(∅) = 1. Assume that in period i, v has the same weight
αi(v) = ϕi(R ∩ [i − 1]) (since the record of v in period i is
R ∩ [i − 1]). Then if wi ∈ Ai(v) ⇔ i ∈ R, its weight in
period i + 1 is gi(αi(v)) = ϕi+1(R ∩ [i]) by definition. If
wi ̸∈ Ai(v)⇔ i ̸∈ R, its weight in period i+1 is fi(αi(v)) =
ϕi+1(R ∩ [i]) by definition.

To show the bulleted axioms:
• For any k and R ⊂ [k − 1], ϕk+1(R) = fi(ϕk(R)) ≥
ϕk(R). Similarly, ϕk+1(R ∪ {i}) = gi(ϕk(R)) ≤
ϕk(R).

• If ϕk(R) = ϕk(R
′), then ϕk+1(R) = fi(ϕk(R)) =

fi(ϕk(R
′)) = ϕk+1(R

′). Also, ϕk+1(R ∪ {i}) =
gi(ϕk(R)) = gi(ϕk(R

′)) = ϕk+1(R
′ ∪ {k}).

For the other direction, suppose Φ is a basic rule under
Definition 3.2. Define B as follows. For all i, for every
R ⊂ [i − 1], let fi(ϕi(R)) = ϕi+1(R), and let gi(ϕi(R)) =
ϕi+1(R ∪ {i}). Let fi(x) = x and gi(x) = x otherwise
(these values of fi and gi do not matter). Observe that fi and
gi are well-defined due to the second bulleted axiom in Def-
inition 3.2: if ϕi(R) = ϕi(R

′), then ϕi+1(R) = ϕi+1(R
′)

and ϕi+1(R ∪ {i}) = ϕi+1(R
′ ∪ {i}).

Voters’ weights are equivalent under the two rules by the
same argument as the forward direction. Also, observe that
the first bulleted axiom in Definition 3.2 implies fi(x) ≥ x
and gi(x) ≤ x.

B.3 Section 4
Proposition 4.1
Proof by contrapositive. Assume the condition in Proposition
4.1 is not met for some k ∈ N. Consider the following k-
decision sequence:

V = v1:k, C = c1:k

∀j < k, ∀j, Aj(vj) = {cj}
Ak(vk) = {ck}; ∀j ̸= k, Ak(vj) = {c1}

We will show that for some way of breaking ties, the rule
produces winner sequence w = (c1, c2, ..., ck−1, c1).

First, we claim inductively that for some way of breaking
ties, wj = cj for periods j ∈ [k − 1]. For j = 1, each
candidate cj receives approval from only vj and all voters
have weight ϕ1(∅) = 1, so all candidates receive 1 weighted
vote and we can choose to break ties in favor of c1. For the
inductive step, let i < k and assume wj = cj for j ∈ [i− 1].
Again, each candidate cj receives approval from only vj . In
period i, for j < i, vj approved cj = wj in period j, so they
have weight ϕi({j}). For j ≥ i, vj did not approve a winner
in prior periods, so they have weight ϕi(∅). Candidates c1
through ci−1 therefore receive ϕi({j}) weighted votes, and
candidates ci through ck receive ϕi(∅) ≥ ϕi({j}) weighted
votes, so we can choose to break ties in favor of ci. Thus
wi = ci.

In period k, c1 receives approval from v1, ..., vk−1.
The win/loss record of each vj is {j}, so c1 receives∑k−1

j=1 ϕk({j}) weighted votes, while ck receives only the ap-
proval of vk with ϕk(∅) weighted votes. c2, ..., ck−1 receive

0 votes. Since the condition in the lemma is not met, c1 re-
ceives equal or greater weighted votes than ck, and we can
break ties in favor of c1.

The sequence w = (c1, c2, ..., ck−1, c1) fails JR because
while |{vk}| = 1 ≥ k/k = |V |/k, and Aj(vk) > 0 for all j,
vk is not satisfied in any period.

Corollary 4.1
Follow the same setup as the proof of Proposition 4.1 up to
period k − 1. By the pidgeonhole principle, there exists at
least one candidate cj∗ ∈ {c1, ..., ck} not elected in periods 1
to k− 1. If there exists more than one such j∗, the winner se-
quence does not satisfy JR regardless of the outcome in elec-
tion k, so we can safely assume j∗ is unique. LetAk(vi) = c1
for all i ̸= j∗, and let Ak(vj∗) = c2. To satisfy JR, c2 must
receive at least equal votes as c1 in period k.

Proposition 4.2
By Corollary 4.1, for JR to be satisfied, for all k ∈ N

1 = ϕ̃(0) = ϕk(∅) ≥
k−1∑
i=1

ϕk({i}) =
k−1∑
i=1

ϕ̃(1) = (k−1)ϕ̃(1)

If ϕ̃(1) > 0, then the condition is violated for k =
⌈

1
ϕ̃(1)

⌉
+1.

It follows that ϕ̃(k) = 0 for all k ≥ 1.
The converse of Proposition 4.2 also holds: the win-based

rule with ϕ̃(k) = 0 for all k ≥ 1 is the “Greedy Chamberain-
Courant” rule (Greedy-CC), which satisfies JR as noted in
Bulteau et al [2021].

Proposition 4.3
By Corollary 4.1, for JR to be satisfied, for all j

ϕ̃(j) = ϕj+1(∅) ≥
j∑

i=1

ϕj+1({i}) = j · ϕ̃(j − 1)

If ϕ̃(k) < k!, then for some j ≤ k, ϕ̃(j) < j · ϕ̃(j − 1).

Proposition 4.4
By Corollary 4.1, for JR to be satisfied, for all k ∈ N

1 = ϕ̃(0) = ϕk(∅) ≥
k−1∑
i=1

ϕk({i})

= ϕ̃(1) +

k−2∑
i=1

ϕ̃(0) = ϕ̃(1) + k − 2

For k ≥ 3, this is violated.

Proposition 4.5
As JR is necessary for EJR, we need only show that the ex-
ceptions found in Propositions 4.2 and 4.3 do not satisfy EJR.
For Proposition 4.2: Greedy-CC does not satisfy EJR.

Proof by counterexample. Consider a 6-voter electorate
V = v1:6 over 4 periods. Assume candidates and prefer-
ences are static and v1 always approves only c1, v2 always ap-
proves only c2, v3 always approves only c3, and {v4, v5, v6}
approves only c4. G = {v4, v5, v6} form a cohesive group
that deserves 2 periods of representation. However, in period
1, c4 wins and the weights of v4, v5, v6 are set to zero, so in



periods 2,3,4 the other candidates win in some order, and no
voter in G is satisfied more than once.
For Proposition 4.3: Loss-based rules with ϕ̃(k) ≥ k! for all
k do not satisfy EJR.

Proof by counterexample. Let rm map to the total number
of losses and ϕ̃(k) = k!. Consider the following 6-decision
sequence with 6 voters and 2 candidates in each period.
The table shows the voters’ weights in each period with the
voter’s number of losses in parentheses, where (*) denotes
that the voter’s approval set is {c1} and (∼) denotes that the
voter’s approval set is {c2}.

Period v1 v2 v3 v4 v5 v6 Winner
1 1* 1* 1* 1 1 1 c1
2 1* 1* 1* 1 1 1 c1
3 1* 1* 1* 2∼ 2∼ 2 c2
4 1* 1* 1* 2 2 6∼ c2
5 2* 2* 2* 6∼ 6∼ 6 c2
6 6* 6* 6* 6 6 24∼ c2

The following table indicates the losses of each voter in
the above example.

Period v1 v2 v3 v4 v5 v6 Winner
1 0 0 0 0 0 0 c1
2 0 0 0 1 1 1 c1
3 0 0 0 2 2 2 c2
4 1 1 1 2 2 3 c2
5 2 2 2 3 3 3 c2
6 3 3 3 3 3 4 c2

G = {v1, v2, v3} is cohesive and deserves 3 periods of
representation, but only gets 2. The method of constructing
counterexamples for ϕ̃(k) > k! follows similarly: the weight
of voters with a single fewer loss increases too fast to achieve
proportionality.

B.4 Section 5.1: Adversarial strategies
Lemma 5.2
Let A′ = A in periods 1, ..., i − 1. Start with A′ = A in
period i.

In period i, if for some v ∈ V \G, c ̸= wi, and c ∈ Ai(v),
removing c from Ai(v) does not change previous winners or
the winner in period i, since c already receives fewer votes
than wi. Furthermore, since removing c does not change the
win/loss record of any voter in period i, it does not affect vote
weights or winners in any future period and therefore does
not affect νk(V \G). Update A′ by removing c from Ai(v).
Iteratively updating A′ over all v ∈ V \G gives us a strategy
that satisfies the first axiom of Pareto efficiency.

SinceG approves some candidate in period i and such can-
didate does not win in period i because A is an adversarial
strategy, νi(Wi) ≥ νi(G). If νi(Wi) = νi(G), we are done.
Assume νi(Wi) > νi(G). There exists X ⊂ Wi such that
νi(Wi \X) = νi(G).

Update A′ by letting Ai(X) = ∅. Observe that winners
are fixed, and for periods i′ < i, no preferences change. In
period i, wi receives νi(G) votes; candidates approved by
some voter in G receive at most νi(G) votes; other candi-
dates receive no votes. Thus the winner wi is preserved. For

periods i′ > i, for x ∈ X , the win/loss record Rx is only
changed by removing period i, and by ordinal preservation,
ϕi′(Rx \ {i}) ≥ ϕi′(Rx), so votes for wi′ weakly increase.
νk(X

′) also weakly increases, and since winners are fixed,
νk(V \ (G ∪ X ′)) is fixed, so νk(V \ G) weakly increases.
Now, A′ dominatesA, equalsA in periods 1, ..., i− 1, and is
Pareto efficient in period i.

For the claim about the maximal strategy: since we can
write down the maximization of νk(V \ G) as a linear pro-
gram, there exists a maximal strategy. To see that there exists
a Pareto efficient maximal strategy, notice that given any ad-
versarial strategy A, we can iterate the above procedure over
all periods, producing a strategy A′ that dominates A and is
Pareto efficient in all periods. As a result, some strategy that
is Pareto efficient in all periods must be maximal.

B.5 Section 5.2: Discount rules
Lemma 5.3
Since ϕ̃(k) = δ · ϕ̃(k − 1) and ϕ̃(0) = 1, ϕ̃(k) = δk. Thus
ψ(k) = δk−1, and we have

ψ(k +m)− ψ(k)
ψ(m)

=
δk+m−1 − δk−1

δm−1
= δk − δk−m

ψ(k + n)− ψ(k)
ψ(n)

=
δk+n−1 − δk−1

δn−1
= δk − δk−n

For m < n,
δk − δk−m ≤ δk − δk−n.

Lemma 5.4
Let A be some adversarial strategy. Using Lemma 5.2, we
can find A1 that dominates A and is Pareto efficient in all
periods.

We create a sequence of adversarial strategies A1, ...,Ak

where the Ai are Pareto efficient in all periods, Ai+1 dom-
inates Ai for each i, and Ak is a Pareto efficient maximal
strategy under which for all i ∈ [k], Wi ⊂ Wi+1. (This
property corresponds to nongroup voters with the least den-
sity approving the winner in every period.)

Consider strategy Ai. Start with Ai+1 = Ai. The gen-
eral idea is that in the first period i in which the strategy is
not allocatively efficient, we can identify some lower-density
subsetX that does not approve the winner and higher-density
subset Y that does approve the winner and show that we can
carefully swap the preferences of X and Y such that winners
are preserved in every period and the vote weight νk(V \G)
weakly increases. We can continue iterating this procedure
until Ai+1 is allocatively efficient in period i.

Let i be the first period for which Ai violates the above
property; in other words, the first period i in which µ(Wi−1 \
Wi) > 0. Then there must exist some subsets X ⊂ Wi,
Y ⊂ V \Wi with uniform densities in period i such thatX has
a lower density than Y , and νi(X) = νi(Y ). WLOG we can
assume X and Y each have uniform preferences for periods
i+1, ...,m−1 (otherwise, since there are only a finite number
of possible preferences, we can subdivide X,Y into subsets
with uniform preferences, and consider these separately).

Suppose that in period i, X has density ϕ̃(m) and Y has
density ϕ̃(n), with m < n.



Denote RX := {i′ > i | X ⊂ Wi} and RY := {i′ >
i | Y ⊂ Wi}. Since µ(X) > µ(Y ), we can pick a subset
X ′ ⊂ X such that µ(Y ) = µ(X).

Update Ai+1: let Ai(X) = {wi} and Ai(Y ) = ∅, and for
periods i′ > i, let voters in X ′ and Y swap preferences. We
want to show that winners are fixed.

• For periods i′ < i, no preferences change.
• For period i, since νi(X) = νi(Y ), votes for wi are

fixed, and other candidates’ votes are fixed.
Consider periods i′ > i. Let ν′i′ , W

′
i′ denote the analogues

of νi′ , Wi′ under the updated strategy. Consider each i′ it-
eratively assuming previous winners are fixed. We will now
show that the winner in period i′ is fixed.

• If i′ ̸∈ RX ∪ RY , clearly Wi′ = W ′
i′ and ν′i′(W

′
i′) =

νi′(Wi′), since neither X nor Y approve any candidates
in either the old or updated strategies.

• If i′ = minRX . Observe that
W ′

i′ = (Wi′ \X) ∪ (Y ∪X \X ′)

We want to show that ν′i′(W
′
i′) ≥ νi′(Wi′). Since pre-

vious winners are fixed and no voters’ preferences have
changed other than those of X and Y ,
ν′i′(W

′
i′) = νi′(Wi′)− νi′(X) + ν′i′(Y ∪X \X ′)

so it suffices to show νi′(X) ≤ ν′i′(Y ∪ X \ X ′). We
derive this condition from Inequality 5.1.
Let k = i′ − i. In the old strategy, νi′(X) = ϕ̃(m +

k)µ(X), and in the updated strategy, ν′i′(Y ) = ϕ̃(n +

k)µ(Y ) and ν′i′(X \ X ′) = ϕ̃(k − 1)µ(X \ X ′). Let
ν denote νi(X) = νi(Y ), then µ(X) = ν

ϕ̃(m)
, µ(Y ) =

ν
ϕ̃(n)

, and µ(X \ X ′) = ν
ϕ̃(m)

− ν
ϕ̃(n)

. Now the above
condition is the following inequality:

ϕ̃(m+ k)− ϕ̃(k − 1)

ϕ̃(m)
≤ ϕ̃(n+ k)− ϕ̃(k − 1)

ϕ̃(n)
which directly follows from Inequality 5.1.

• If i′ ∈ RX \ {minRX}, observe that since µ(X) =
µ(Y ∪X \X ′) and consecutive losses prior to period i′
for Y ∪ X \ X ′ in the updated strategy equal those for
X in the old strategy, ν′i′(Y ∪X \X ′) = νi′(X).

• If i′ ∈ RY , the same statement holds forX ′ and Y . Thus
all wi′ receive weakly increased votes under the updated
strategy.

The intuition is as follows: since µ(X ′) = µ(Y ), in any fu-
ture periods in which Y previously approved the winner, the
necessary vote weight can be taken care of by directing X ′ to
approve. For future periods in which X previously approved
the winner, it suffices to check that Y ∪X \X ′ (which has the
same measure as X) can take care of the vote weight of X in
the first period after i that X approves, which comes from In-
equality 5.1; in later periods in whichX previously approved,
the vote weight of Y ∪X \X ′ was reset in the same period as
X was previously, so the necessary vote weight can be taken
care of by directing Y ∪X \X ′ to approve.

Note that after this update, νk(V \ G) weakly increases.
Since winners are fixed, νk(V \ (G ∪ X ∪ Y )) is fixed. In
period k, consecutive losses for X ′ in the updated strategy
equal those for Y in the old strategy, and µ(X ′) = µ(Y ), so

ν′k(X
′) = νk(Y ). If RX = ∅, then again ν′k(Y ∪X \X ′) ≥

νk(X) by Inequality 5.1, and otherwise consecutive losses for
Y ∪X \X ′ in the updated strategy equal those for X in the
old strategy, so ν′k(Y ∪X \X ′) ≥ νk(X).

We can continue iterating these swaps until all the voters
with the least density approvewi in period i. Finally, we need
to update strategy Ai+1 so that it is Pareto efficient. We can
iteratively apply Lemma 5.2 to obtain a strategy that equals
the original Ai+1 on all periods 1, ..., i and is Pareto efficient
in the remaining periods. Now define Ai+1 to be the next
strategy in the sequence. Continuing the sequence until Ak,
we obtain a strategy Ak that dominates A and satisfies the
condition in Lemma 5.4. Conclude that since any strategy
A is dominated by a strategy that satisfies the condition in
the lemma, there exists some maximal strategy satisfying the
condition.

Theorem 5.1 additional notes
Clarification: in the abridged version of the proof in the pa-
per text, we made a typo substituting the wrong symbol m for
the symbol k in two lines of this proof. We apologize for the
error. For clarity, the entire proof is included here, including
the corrected version of the part included in the paper text.
Proof of Theorem 5.1. WLOG let G = [0, 1]. Consider the
maximal strategy provided by Lemma 5.4. SinceWi−1 ⊂Wi

and νi(Wi) = ϕ̃(i− 1) = δi−1 for each i,

µ(Wi) = 1 +
(
1− 1

δi−1

)
µ(Wi−1) = i−

∑i−1

j=1

µ(Wj)

δj

Now we try to bound νk(V \G). We can loosely upper bound
µ(Wi) by i:

µ(Wk−1) ≥ k − 1−
∑k−2

i=1

i

δi
> k − 1− δ

(1− δ)2

νk(V \G) = µ(Wk−1) + δk−1(k − 1− µ(Wk−1))

Applying Lemma 5.1, a discount rule satisfies JR if we can
show that under the maximal strategy, νk(V \ G) < δk−1 ≤
νk(G), which is the condition that

hδ(k) =
δ

(1− δ)2
+
k − 1

δk−1
< 1

For δ > 2.619, there exists K for which hδ(K) < 1. Since
h′δ(k) < 0 for k >

√
δ + 1, hδ(k) < 1 for all k ≥ K, which

implies JR for k ≥ K periods.
Furthermore, we claim that JR for K periods implies JR

for k < K periods. Assume some discount rule with b = 0
fails JR for k < K periods. Then, for V = [0,K], C =
{c, w1, ..., wK}. Assume the cohesive group [0, 1] approves
{c} in every period. There exists some strategy for which in
period k, νk([1, k]) ≥ ϕ̃(k − 1) = δk−1 and [0, 1] ∪ [k,K]
remains unrepresented. Then, for each i ∈ {k, ...,K − 1},
let Wi = [i − 1, i] with Ai(v) = {wi} for v ∈ Wi and ∅ for
v ∈ [1,K] \ WK . In period K, let [1,K] approve {wK}.
νK([1,K]) > νK([1, k]) = δK−kνk([1, k]) ≥ δK−1 =
νK([0, 1]), so wK wins in period K and [0, 1] is unrepre-
sented in periods i ∈ [K], failing JR for K periods.

Since the proof of this theorem does not use a tight bound
on µ(Wk−1), calculating the number of non-group votes gen-
erated by the maximal adversarial strategy indicates a possi-



bly lower optimal bound for δ.
Proposition. Discount rules with δ > 2.4622 and b = 0
satisfy JR for k ≤ 100000 periods. Consider the maximal
adversarial strategy. For all i,

µ(Wi) = 1 + (1− 1

δi−1
)µ(Wi−1)

The votes of non-group voters in period k is
νk(V \G) = δk−1µ(Wi) + (k − 1− µ(Wi))

Thus, for δ > 2.4622, k = 100000, we can compute a bound
for νk(V \G), which satisfies the JR condition

νk(V \G) < δk−1 = νk(G).

Lemma 5.5
Since ϕ̃(k) = δ · ϕ̃(k−1)+1 and ϕ̃(0) = 1, ϕ̃(k) = δk+1−1

δ−1 .

Thus ψ(k) = δk−1
δ−1 , and we have

ψ(k +m)− ψ(k)
ψ(m)

=
δk+m − δk

δm − 1
= δk

ψ(k + n)− ψ(k)
ψ(n)

=
δk+n − δk

δn − 1
= δk

so they are equal for any m,n, k.

Lemma 5.6
The proof follows from that of Lemma 5.4. Since Inequality
5.1 is satisfied with equality, the proof of Lemma 5.4 demon-
strates that in any period i, performing any substitution of
subsets X ⊂ Wi and Y ⊂ V \Wi, where νi(X) = νi(Y ),
achieves the same νk(V \G).

B.6 Section 5.3: Polynomial rules
Theorem 5.3
We start by constructing an example where the rule fails any
α-approximation of EJR in the continuous-voter case and
then explain how we can convert it to an example with dis-
crete voters.

Pick δ0 = min(δ,mink≤K
ϕ̃(k)

ϕ̃(k−1)
) > 1. Then for all pe-

riods i, ϕ̃(i) ≥ δ0 · ϕ̃(i − 1). Let V = [0, 2n + 1 − ε] for
n > logδ0 2 and small ε > 0. Let G = [2n, 2n + 1 − ε]
cohesive. The following algorithm defines Vi ⊂ V .
A := [0, n], B := [n, 2n], S := (A,B), i := 1, q := 0
loop

K := minS[0]
while K < maxS[0] do

Vi := [K, k + 1]; i← i+ 1; K ← K + 1

K := minS[1]
while K < maxS[1] do

for q′ ∈ [2q] do
Vi := [K +(q′− 1)/2q,K+ q′/2q]; i← i+1

K ← K + 1
Vi := G; i← i+ 1
S ← (S[1], S[0]); q ← q + 1

For all i, v ∈ V \ G, let Ai(v) = {wi} for v ∈ Vi and
Ai(v) = ∅ otherwise. We will show that Wj = Vj for all j.

For some i, assumeWj = Vj for j ∈ [i−1]; we showWi =
Vi. If Vi = G, in period i, all of G approves some candidate,
and for all v ∈ V \G, Ai(v) = ∅, so such candidate wins and

Wi = G. For the remaining cases, since voters in V \(G∪Vi)
approve nothing, it suffices to show νi(Vi) > νi(G).
Case 1: at the point Vi is defined in the algorithm, q = 0.
Then for all v ∈ G and v′ ∈ Vi, αi(v) = αi(v

′) = ϕ̃(i− 1),
and µ(Vi) > µ(G), so νi(Vi) > νi(G).
Case 2: q > 0 and Vi is defined in the first while loop. At the
point Vi is defined in the algorithm, for v ∈ G, consecutive
losses are propi(v) = K − minS[0], while for v′ ∈ Vi,
propi(v

′) ≥ K − minS[0] + 1, so αi(v
′) > αi(v), and

µ(Vi) > µ(G), therefore νi(Vi) > νi(G).
Case 3: q > 0 and Vi is defined in the second while
loop. At the point Vi is defined in the algorithm, for v ∈
G, propi(v) = n + K − minS[1], while for v′ ∈ Vi,
propi(v

′) ≥ n + K − minS[1] + 2q−1n. Thus αi(v
′) ≥

(δn0 )
2q−1 ·αi(v) > 22

q−1 ·αi(v). Since µ(Vi) = 1
2q µ(Vi) and

q ≥ 1, νi(Vi) > 22
q−1−qνi(G) ≥ νi(G).

G is represented r − 1 times in the first k(r) := r − 1 +∑r−1
q=0 n(1+2q) periods. For any α, pick r ∈ N large enough

that 2r

r > α
n ·

2n+1−ε
1−ε and consider the k = m(r) period

horizon. Then µ(G) > rα · µ(V )
k , but any voter in G is only

represented at most r − 1 times, so the winner sequence fails
to be an α-approximation of EJR. For a setup with discrete
voters, let ε = 1

2r , then we can divide V into slices with
µ = 1

2r with cohesive preferences in all periods and consider
each of these slices to be an individual voter.

Theorem 5.4
First, note that the linear rule satisfies Inequality 5.1 with ex-
act equality. Since ϕ̃(k) = k + 1, ψ(x) = x. Then
ψ(k +m)− ψ(k)

ψ(m)
=
m

m
= 1 =

n

n
=
ψ(k + n)− ψ(k)

ψ(n)
so any Pareto efficient strategy is maximal.

Let G be cohesive and µ(G) ≥ 2ℓµ(V )/k. Observe that
in any Pareto efficient strategy, if G remains unsatisfied in
period i, for each period i

νi+1(V \G) = νi(V \G) + µ(V \G)− νi(G)
so therefore

νk(V \G) = k · µ(V \G)−
k−1∑
i=1

νi(G)

Since G is not satisfied in any periods, νi(G) = i · µ(G),
so the sum is 1

2k(k − 1)µ(G). In addition, since µ(G) ≥
2 · ℓ · µ(V )/k, µ(V \G) ≤ k−2ℓ

2ℓ µ(G), so we have

νk(V \G) ≤
1

2
k(
k − 2ℓ

2ℓ
)µ(G)− 1

2
k(k − 1)µ(G) ≤ 0

which is a contradiction, so G must be satisfied before period
k.



Lemma 5.7
Since ϕ̃(x) = (x+1)p, ψ(x) = xp. We can rewrite Inequality
5.1 in the following fashion:

ψ(k +m)− ψ(k)
m

· m

ψ(m)− ψ(0)

≥ ψ(k + n)− ψ(k)
n

· n

ψ(n)− ψ(0)

log

(
ψ(k +m)− ψ(k)

m

)
− log

(
ψ(m)− ψ(0)

m

)
≥ log

(
ψ(k + n)− ψ(k)

n

)
− log

(
ψ(n)− ψ(0)

n

)

for any m < n, which follows from the fact that logψ′(x) is
everywhere concave.

Lemma 5.8
The proof follows similarly from that of Lemma 5.4, except
we perform swaps in the opposite direction. In each period
i, considering subset X ⊂ Wi with lower density and subset
Y ⊂ V \Wi with higher density and νi(X) = νi(Y ), argue
that swapping the preferences of X and Y in period i weakly
increases νk(V \G), since Inequality 5.1 holds in the opposite
direction.

Theorem 5.5
Consider the maximal strategy provided by Lemma 5.8. In
this maximal strategy, we allocate the non-group voters with
the highest density to approve the winners. We wish to bound
νk(V \G). Denote α = 1+ 1

p , and WLOG let µ(V ) = k/α.
Let G be cohesive with µ(G) ≥ αµ(V )/k.

Suppose a 1-indexed list Ai keeps track of the measures of
non-group voters with each possible weight in period i. Then
defineA1 to be the list with one entry k/α−1, and each entry
j denotes

Ai[j] = µ({v ∈ V \G | αi(v) = ϕ̃(i− j)})
In each period, we can compute the list Ai+1 from Ai by

performing the following algorithm. Add an entryAi+1[i+1]
to the end of Ai. Keep track of a budget B, which is initially
αϕ̃(i− 1), that represents the remainder of νi(G), and iterate
on the list starting at the 1st index until the budget is used
up. On each list item j, if B ≥ A[j]ϕ̃(i− j) (where the right
hand side represents the νi value of the non-group voters with
density ϕ̃(i−j)), then set the list item to zero and add it to the
entry A[i + 1]; continue iterating with the remaining budget.
Otherwise, remove B/ϕ̃(i − j) from the list item and add it
to the entry A[i+ 1], then stop iteration.

The iteration proceeds from the beginning of the list be-
cause under the maximal strategy, the voters with the highest
weights are selected to approve the winners, and after they
approve, their weights are reset to the lowest weight (which
is why their µ is added to the last entry in A). To make this
process easier to describe, when some amount of µ is added
to the last list entry, say that G has “consumed” these voters.

To show the α-approximation, we must show that νk(V \
G) < νk(G), which is the same as the claim that in period

k, this iteration will proceed through all of the list entries
A[1], ..., A[k].

For a polynomial rule with parameter p, we can approxi-
mate the behavior of this discrete-iteration process by a con-
tinuous process described by the following differential equa-
tion:

dy

dt
=

(
t

t− t(y − k)

)p

where y represents the total µ of voters that have been con-
sumed since period 1, and t is a continuous quantity that de-
scribes how many periods have passed. Also, we have the
initial condition that up to t = k/α, y = t (as up to pe-
riod k, G consumes exactly µ = 1 voters in every period).
The function t(y − k) represents the time at which the total
µ consumed was y − k. This differential equation defines
a curve y = ck(t) such that the curve defined for periods
β · k satisfies cβ·k(t) = βck(t/β). The relevant condition
to check is whether τ := inft{dydt > k/α} < k – if so, G
will be able to consume the entire electorate in a single pe-
riod, and therefore its preferred candidate must win the elec-
tion. Though this curve does not have a closed-form solu-
tion, we can lower and upper bound it by the discrete process
that it approximates. In particular, if T is the earliest period
such that G consumes the entire electorate in a single period,
then T < τ < T + 1. Since the bound α = 1 + 1

p is not
tight, we can select a large enough number of periods such
that T + 1 < k, which then shows the theoretical bound for
any number of periods (as for any k, T +1 provides an upper
bound on τ , and T < τ < T + 1 < k). These bounds al-
low us to prove the α-approximation for some polynomials;
we chose to explore 1.01 < p < 10, but this technique may
also allow us to show the α-approximation for p outside of
this interval. The blue line on the below graph shows the JR
approximation bound, while the yellow line is the function
1 + 1/x.

Theorem 5.6
We walk through the proof in more detail. Consider a k-
decision instanceD and a cohesive groupG, |G| ≥ 2ℓ·|V |/k.
Since any voter inGmay be allowed to be satisfied up to ℓ−1
times without the winner sequence satisfying EJR, we allow
the adversary to



• Partition G into finitely many subsets Gq;
• On each Gq , select the periods Rq ⊂ [k − 1] in which
Gq is satisfied, such that |Rq| ≤ ℓ− 1;

• Choose the preferences of non-group voters V \G such
that each Gq is satisfied in exactly periods Rq;

performing this process in a way that maximizes νk(V \G)−
νk(G). The third step of this optimization follows the same
maximization procedure as the JR adversary; since νk(G)
depends only on the subsets Gq and the periods in which
they are satisfied (Rq), the adversary must only choose how
to allocate voters V \ G to the Wi such that νk(V \ G) is
maximized. Again, as the linear rule satisfies Inequality 5.1
with equality, a version of Lemma 5.6 holds: considering the
first two steps of this optimization fixed, every Pareto optimal
strategy on the third step is maximal.

For each i, define Hi = G \ Wi. Since the only criteria
of adversarial strategies for EJR is that no voter in G can be
satisfied more than ℓ − 1 times, it is possible that the adver-
sary selects a strategy such that a subset of non-group vot-
ers supports the candidate of a subset of G, preventing the
preferred candidate that lies in the intersection of voter pref-
erences within G from being selected. For this reason, we
allow the adversary to select any arbitrary subset of G to be
satisfied in any period. Since Hi is the portion of G left un-
satisfied, non-group voters must provide νi(Hi) vote weight
to the supported candidate of G ∩Wi so it can win over the
preferred candidate of all of G. For every period i, under any
Pareto optimal strategy

νi+1(V \G) = νi(V \G) + µ(V \G)− νi(Hi)

νk(V \G) = k · µ(V \G)−
∑k−1

i=1
νi(Hi)

Also, observe that

νk(G) +
∑k−1

i=1
νi(G \Hi) = k · µ(G)

by the same logic as the weight for V \ G: under the linear
rule, in each period i, the weight of voters v ∈ G who are
satisfied is removed from νi+1(G), and then µ(G) weight is
added to G. Since every voter in G is represented at most
ℓ− 1 times∑k−1

i=1
νi(G) ≥ ℓ ·

1

2
· k
ℓ
· (k
ℓ
+ 1)µ(G) ≥ k2

2ℓ
µ(G)

where the bound is attained when the periods in which voters
in G are satisfied evenly divide the k total periods.

νk(V \G)− νk(G)

= k · µ(V \G)− k · µ(G)−
∑k−1

i=1
νi(G)

≤ k( k
2ℓ

)µ(G)− k · µ(G)− k2

2ℓ
µ(G) < 0

so G must be represented in period k.

C Polynomial rules and EJR approximations
While polynomial rules for p > 1 achieve a better approx-
imation of JR than the linear rule with p = 1, larger poly-
nomials do not achieve a better EJR approximation than the
linear rule for the same reason that discount rules fail on this
metric. Increased growth in vote weights after several consec-
utive losses means that groups that may deserve to be repre-

sented relatively frequently will be de-prioritized. One addi-
tional difficulty of studying polynomial rules is that it is hard
to reason about the optimal adversarial strategy because the
strategy space (as described in the proof of Theorem 5.6) is
very large. Unlike the linear case, the total vote weights of
groups are not easily computable by adding the voter mea-
sure and subtracting an offset for the subset of a group that is
satisfied.

For k ≤ 100 periods, we plot below the worst-case EJR
approximation (on the y-axis) against the polynomial param-
eter p (on the x-axis) where the adversary is restricted to us-
ing the strategy that optimizes against the JR approximation
and is optimal for the EJR approximation in the linear case,
in which the adversary attempts to prolong each additional
group representation by as many periods as possible.

For k ≤ 100 periods, we plot below the worst-case EJR ap-
proximation (on the y-axis) against the polynomial parameter
p (on the x-axis) where the adversary is restricted to using
strategies in which for the spacing between the first k − 1
times G is represented is fixed.

These graphs offer some evidence that polynomial rules for
p > 1 may be able to achieve better approximations for EJR
than the linear rule for p = 1. More sophisticated adversarial
strategies may prove to worsen the approximations achievable
via polynomial rules. Notably, however, these plots line up
with the superior performance of the polynomial rule with



p = 1.1 in our simulations.

D Simulations
D.1 Methodology Details
We provide further details discussing our perpetual vot-
ing simulations, building on the presentation in Section 6.
Our intention behind constructing these simulations was to
mimic realistic perpetual voting settings while also effec-
tively demonstrating EJR satisfaction.

In generating initial voter preferences for decision se-
quences with N voters and M candidates, we specifically
set each voter to approve N (M/4,M/10) of the candidates,
where N denotes the Normal distribution. This reflects a re-
alistic assumption that voters should approve similar num-
bers of candidates. We also randomly set candidates to be
chosen with different likelihoods: We generate for each can-
didate a random number uniformly in [0, 1] to create an ar-
ray of relative likelihoods, normalize the array to sum to
1, and then generate each voter’s preferences via a random
choice with this array used to denote choice probabilities (via
numpy.random.choice).

This method operates similarly to the p-Impartial Culture
method described in Bredereck et al [2019], but further spec-
ifying each candidate’s likelihoods of being chosen and the
average number of candidates chosen. While this method dif-
fers from those used in the simulations by Lackner [2020]
and Bredereck et al [2019], setting each voter to approve ap-
proximately a quarter of the candidates aligns with Lackner
[2020], in which an average of 1.8 out of 5 (36%) candidates
were approved every period, and Bredereck et al [2019], in
which an average of between 0% and 50% of candidates were
approved every period. We also believe that this method’s in-
clusion of factors such as candidates’ relative approval like-
lihoods, which are arguably analogous to popularity levels,
makes it more realistic than specifying preferences through
random subset generation, as is done in Bulteau et al [2021].

Our method of changing preferences between periods us-
ing the Geometric distribution is also comparable to Bulteau
et al [2021], which changes votes for currently-approved or
disapproved candidates independently; however, using a dis-
tribution allows us to succinctly summarize how many prefer-
ences change. Note that by the Geometric distribution, each
voter changes their vote for 1 candidate on average between
periods. We also clip the distribution’s values to [0,M ] since
the number of votes changed must lie in that range. Broadly,
it may be of further interest to examine whether or not these
simulation results change when different aspects of this pref-
erence generation process are modified.

In explicitly constructing cohesive groups to test EJR, our
choice to modify the decision sequence to change the group’s
preferences as described (members in the group approve only
one candidate in each period, which other voters do not ap-
prove) is intentional and done to best test the performance of
EJR in edge cases that arguably remain realistic. Although
this construction leaves the group members with identical
preferences in each period that are isolated from the rest of
the voters, this setting is feasibly comparable to practical
situations, such as by interpreting the group as a minority

bloc with alternative views. To satisfy EJR, the single can-
didate approved by the group would have to win sufficiently
many times, despite being approved by only the group. Rules
whose formulations do not naturally lead to the identification
of this group as deserving representation, such as plain ap-
proval voting or GreedyCC, can thus empirically be shown to
fail to satisfy EJR and not demonstrate proportional represen-
tation of the group, as seen in Figure 1.

These differences between rules are noticably less pro-
nounced when we relax constraints on the preferences of the
constructed group. Intuitively, in each period, if the group can
also approve other candidates, the likelihood that any voter in
the group is satisfied in each period increases since they now
approve strictly more candidates. If voters outside the group
can also approve the candidate unanimously approved by the
group, the likelihood that the candidate is elected increases
as it receives strictly more support from voters. In both cases,
the overall satisfaction of the group increases, causing general
voting rules—even plain approval voting—to be much more
successful in satisfying EJR. We demonstrate this below.

Because these experiments only consider one group and its
fulfillment of EJR in each decision sequence, this allows us to
consider many voters (N = 1000). The parameter ranges for
values of M and k used are similar to those used by Lackner
[2020] and Bulteau et al [2021].

D.2 Additional Simulations
Using the same methodology for creating a cohesive group
and testing for its EJR satisfaction under various rules as in
Section 6, we considered EJR satisfaction results for addi-
tional settings of N , M , k, and ℓ outside of those given in
Table 1. We considered using larger values of the number of
candidates M , including M ∈ {10, 20}; modifying the av-
erage number of candidates approved by each voter in initial
preference generation to values like M/5 or M/3 of the can-
didates; and increasing k and ℓ to other reasonable values,
including k ∈ {30, 40, 50} and ℓ ∈ {5, 10, 15}.

Running simulations with combinations of these additional
parameter values led to similar results and trends in rules’
EJR satisfaction. AV continued to fail to satisfy EJR in the
vast majority of instances, while Perpetual Phragmen and
Equal Shares satisfied EJR in all instances. We found overall
that the trends exhibited by GreedyCC, Perpetual PAV, dis-
count, and polynomial rules depended on the ratio ℓ/k; this
is a generalization of the trend exhibited in Table 1, which
was based increasing values of ℓ as fixed values of k were
considered. GreedyCC satisfied JR (equivalent to the cases
with ℓ = 1), but its performance dropped with increasing
ℓ/k. Perpetual PAV satisfied EJR increasingly with increas-
ing ℓ/k. Discount and polynomial rules exhibited decreasing
performance with increasing ℓ/k, with lower values of δ in
discount rules and lower values of n in polynomial rules per-
forming better in comparison. Given the close similarity of
these additional results for these larger ranges of parameters
tested, we do not provide additional summary tables.

Relaxing some of the restrictions on the preferences of the
constructed cohesive group being studied led to substantial
increases in rules’ satisfaction of EJR. Indeed, if either of the
restrictions that



(a) each voter in the group approves only one shared candi-
date, and no other candidates, in each period;

(b) voters not in the group cannot approve the candidate ap-
proved by the group in each period;

were relaxed, then all rules except for GreedyCC satisfied
EJR in all instances. Thus adding these additional restric-
tions on the constructed group were necessary to empirically
differentiate the rules.

In this vein, we additionally followed the same process
used to generate Figure 1 with the above two conditions for
the cohesive group relaxed in simulations, plotting maximum
group voter satisfaction against group size as a proportion of
N forM = 10,N = 100, k = 50 and group size in [2, 40] for
100 iterations each, producing Figures 2-4. As can be seen, if
the group’s voting preferences are not as isolated by relaxing
restrictions, then in the vast majority of cases all rules better
satisfy the group for all group sizes.

Figure 2: Maximum Group Voter Satisfaction (vertical axis) ver-
sus Group Size (horizontal axis), with above condition (a) re-
moved. Allowing voters in the constructed group to vote for other
candidates in addition to the shared candidate leads to high satisfac-
tion levels for all rules and group sizes.

Figure 3: Maximum Group Voter Satisfaction (vertical axis) ver-
sus Group Size (horizontal axis), with above condition (b) re-
moved. Allowing voters outside the constructed group to vote for
the group’s preferred candidate also leads to higher maximum satis-
factions, although AV and GreedyCC do not demonstrate the desired
linear trend between maximum satisfaction and group size. Interest-
ingly, this is a situation where GreedyCC does worse on average.

Figure 4: Maximum Group Voter Satisfaction (vertical axis) ver-
sus Group Size (horizontal axis), with above conditions (a) and
(b) removed. Relaxing both restrictions also leads to high satisfac-
tion levels across the board.
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